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[TepiAnym

H npéPreym 1oV celopmv amotehel pio omd T ONUOVTIKOTEPES, OAAL TOVTOYPOVA EENPETIKGL
OVOKOAEG TPOKANCELS GTOV TOHEN NG YEWQLOIKNG. H mpoPreyn twv celopmv €xel
duVATOTNTO VO LELDGEL TOVG KIVOUVOLG Kot Vo PEATIOCEL TN SLEIPION KOTAGTPOPDV, VO
Bonbnoet katd TN ObpKEW HWOG KATOUOTPOPNG Kol Vo GUUPAAEL OTOV WETPLOCUO TV
EMITTOCEMY. TNV TOPOVCH HEAETN, XPNCLOTOLOVVTOL TEYVIKES UNYaviKng nabnong (ML) kou
Babiag pabnong (DL) ywo v avaAivon dE00UEVOV YPOVOGEIPAOV LE GKOTO TNV TPOPAEYN
oEIGIKOV Qowvopévev. H €pguva avt peretd v avantuén pebddwv otnv VTOAOYIGTIKY
emeEepyaoia, TPOKEWEVOL Vo aviyvevbolv Oeikteg celoKOY dedopévav katl vo, avénbet 1

axpifeto g TpOPAEYTS.

H avdivon Eexwva pe v mapovsioon g onpaciog kot Tov oToy®v Tov Hefddmv TexvnTg
vonpoovvng (Al) yuo v mpdPreyn celou®dv, 0KoAOVOOVUEVT] OO L GTATIGTIKT KOl OTTIKN
TOPOLGIOCT) TV YPNOLUOTOLOVUEV®Y GUVOA®V dedopévav. Avtd yivetar yio va e€nynbodv ot
LETPIKES KO TOL LETPAL TTOL AdpPavovTtatl vToYN, KaOdG Kot Ol TO CTUOVTIKEG TAGELS 1 AKPOIES
TIWEG TTOL VTLAPYOVV 0TO GLAAEYOEVTO Gelopikad dedopéva. H €pguva otoyevel oty mopoyn
poG eneENynong Tov Bempidv Kot TEXVIKAOV TOV YPNCLLOTOI0VVTOL Y10 TV OVOyVMOPLoN, TNV
avdAvon kol TNV TOVTOToinon TV PACIKOV TPOTHTWV TOV EGEPYOUEVAOV GEICUIKOV
dedopévmv, kabmg Kot OA®V TV 6ToXElMV TOL KaB16TOVOV Eva TpdTLTO TBAVO TPOdyYELo EVOG
eMKeILEVOL GEIGLOD.

H pon gpyaciag mepieypdonke Aentopep®d 6060V apopd TV mpo encEepyocio SEOOUEVMV, TV
EMAOYY HOVTEA®V Kol TIS O00IKOGIEG TOL TEPIAAUPAVOLY TN XPNON UN GOPPOTNUEVDV
ocLVOA®V dedopévav. AdBnke dtaitepn EU@OOT OTN UNYOVIKY YopoktnploTikov (feature
engineering) ko tnv eMA0yYN yopaxtnplotikav (feature selection) yio v avdmtoén evog o
amod0TIKOV HovTtéAov. Xpnowomomdnkav okt® poviéAa ML kot DL, peta&d towv omoimv
dtktva Long Short-Term Memory (LSTM), Movadeg Gated Recurrent (GRU) ko Zvvelktikd,
Nevpovikd Alktva (CNN). H Bedtictomoinon t@v vepmopapéTpmyv TpoyLatomoinke LEGm
grid search, pie 6100 T Pertioon g axpifeag TpOPAEYNS TOV LOVTEAWV.

IMa v a&lohdynon g amotelespatikdTnTog TOV HEBOOMV, £EETAGTNKAY TO ATOTEAEGLLOTOL
TPV Kot PeTA TN PerTioTomoinom, Aapupdvovtog voyn v akpifeia kot GAAES LETPIKES, KOODG
Kol ™ otafepodTNTa TOV omoteEAecHATOV. To dpbBpo oAoKANpdVETAL e £V GLUTEPAGHLA, GTO
01010 TOPOVGIALOVTOL TO, TLO CTUAVTIK( ATTOTEAEGLLATO, TOL OPEAT] TTOV TPOGPEPOLY Ot PéEB0dOL
TEYVNTNAG VOMUOGUVNG Yo TNV TTPOPAEYN CeloudV, Kabdg kot to BEATIOTO HoVTEAD Kot Ol
TOPAUETPOL TOV TPOEKLYOAV OO TOL TELPALOLTOL.
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Abstract

The prediction of earthquakes stands as one of the most important, yet extremely difficult tasks
to accomplish in the field of geophysics. The prediction of earthquakes has the ability to lessen
risks and improve disaster management, assist during the time of catastrophe and mitigate risk.
In this study machine learning (ML) and deep learning (DL) techniques are used to analyze
time-series data in order to forecast seismic events. This research is proposed to develop
methods in computing to detect indicators of seismic data in order to increase the prediction
accuracy.

This analysis begins with the importance and goals of Al methods towards earthquake
prediction, followed by a statistical and visual presentation of the data sets utilized to explain
the metrics and measures we are taking into consideration along with the most important trends
or outliers that are present in the gathered seismic data. The research tries to provide an
important explanation of the theories and techniques to recognize, explain and identify the
basic data patterns of the incoming seismic data and all the elements that make the pattern a
precursor of a possible Earthquake.

The workflow was described in detail with regards to data preprocessing, model selection, and
those processes which involve the usage of imbalanced datasets. More attention was given to
feature engineering and feature selection for developing a better performing model. Eight ML
and DL models were used which included Long Short-Term Memory networks (LSTM), Gated
Recurrent Units (GRU), and Convolutional Neural Networks (CNN). Hyper parameter tuning
was done through grid search with the goal of increasing the prediction accuracy in the models.

To understand the effectiveness of the methods, both the pre-optimization and post-
optimization results were checked for accuracy and other metrics along with how robust the
results are. The paper closes with a conclusion containing the most important results outlining
the benefits that Al based methods offer to seismic predictions and the best models and
parameters obtained from experiments.
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Earthquake The process of forecasting seismic events using scientific methods
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Seismic The frequency, type, and size of earthquakes occurring in a specific region

Activity over time

Machine A subset of Al that enables systems to learn from data and make predictions

Learning without explicit programming

Deep A specialized field of ML using neural networks with multiple layers to

Learning model complex patterns in data

Time Series | The study of data points collected or recorded at successive time intervals to

Analysis detect trends and patterns

LSTM A type of recurrent neural network (RNN) designed to handle long-term
dependencies in sequential data

GRU A variant of RNN that uses gating mechanisms to efficiently capture
dependencies in time series data

CNN A deep learning architecture mainly used for image processing but also
effective in analyzing spatial and sequential data

RNN A neural network designed for processing sequential data by maintaining
memory of previous inputs

Feature The process of selecting the most relevant variables in a dataset to improve

Selection model performance and efficiency

SHAP An interpretability method that explains the impact of each feature on a
model's predictions

RFE A feature selection method that recursively removes less important features
to improve model accuracy

Receiver A system that transmits and receives signals, often used in sensor networks

for data collection

Imbalanced | A dataset where some classes are significantly underrepresented, leading to
Data biased model predictions

Feature The process of creating new input variables to improve ML model
Engineering | performance

Anomaly The identification of unusual patterns or outliers in data that may indicate
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Forecasting

Detection significant events
Signal Techniques for analyzing, modifying, and interpreting signals from sensors
Processing or time series data
Time Series | The use of statistical or ML methods to predict future values based on past

time-dependent data

Disaster Strategies and measures taken to mitigate the impact of natural disasters
Preparedness | before they occur

Risk The evaluation of potential risks associated with natural disasters and their
Assessment | impact

Predictive The process of creating models to predict future events based on historical
Modeling data
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1. Introduction

Earthquakes are one of the most powerful natural forces on the planet, capable of taking
countless lives whilst causing grave destruction to economies and the environment. There have
been various researches in the technology and the causation of earthquakes that have improved
the monitoring and management of seismic activities, however, there is still room for
improvement in predicting earthquakes reliably and successfully.

Artificial intelligence as well as machine learning changed the model of prediction itself in
numerous fields or areas, and the existence of big unorganized data has opened the opportunity
to search for weak dependencies that are impossible for people to identify. To improve the way
we predict earthquakes, deep learning, specifically time series analysis, became a suitable
solution, as it was able to learn how to connect and cross reference correlations over time within
the earthquake data.

This thesis investigates the development of a machine/deep learning models for the estimation
of the probability for a strong earthquake to occur based on 6 years (2014-2020) of very low
frequency (VLF) subionospheric propagation data from 19 VLF receivers in Japan. The data
was transmitted via the JJI VLF transmitter, which has a frequency of 22.2 kHz. The analysis
included earthquakes (ML > 4.5, depth < 50 km) that occurred during the same time frame
within the area of Japan together with the VLF data.

The use of ionospheric anomalies for the prediction of earthquakes through the nighttime
fluctuation method (NFM) and terminator time method (TTM) is still a controversial subject
among the scientific community. So there is a strong need to evaluate the effectiveness and
limitations of these approaches in order to contribute to the ongoing dialogue of creating a way
to accurately predict high magnitude earthquake occurrences. 16!
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2. Theory

2.1. Introduction to Earthquakes

Earthquakes are abrupt violent shakes of the ground that are usually caused by movements
along faults or volcanic activities. They happen when tectonic plates move under great stress,
releasing energy in the Earth’s crust which creates seismic waves. During the event, the energy
that is released is measured by the Richter or moment magnitude scales and quantifies the
energy released. Events of high magnitude can destroy human life, impact infrastructure, and
heavily disrupt ecosystems.

With the advances of modern technology, predicting earthquakes is still a huge challenge that
many scientists face. One of the main reasons is the variety of factors that play a role during an
earthquake, along with the lacking precursors. Because of this, earthquakes are still regarded
as inaccurate natural processes that are caused by tectonic movements.

In our efforts to accurately predict this natural process we are employing different methods and
tools to create a system that can identify the precursors of an earthquake and provide warning
to the areas affected.

2.2. Terminator Time Method (TTM)

The Terminator Time Method (TTM) is a Method that aims to examine the alterations
experienced by the ionosphere during the inferior and superior transitions, commonly referred
to as 'terminator times." These periods are characterized by alterations of the ionospheric
activities, due to the effects of the sun on the Earth's atmosphere, during these periods
experiencing rapid changes. It is during these transitions that TTM are utilized to observe how
earthquakes and other extreme phenomena do alter these periods of amplitude dips. Moderate
to significant seismic activities may also induce minor shifts in the time of
transitions/terminator times. Studying these shifts using TTM, we may have an opportunity to
detect various upcoming seismic activities and hence contribute to research of how to
accurately predict earthquakes.

In simple terms: TTM uses the times of sunrises and sunsets to try and locate, and research, the
unusual patterns in the lonization layer region above the earth that might be linked to
earthquakes.

The Terminator Time Method (TTM) is designed for monitoring the timing of sunrise and
sunset as it pertains to the minima found in the amplitude or phase of a signal.

The sunrise and sunset signals exhibit terminator times (TTs) and include the following:
e The amplitude SRT is also known as the sunrise terminator.
e The amplitude SST is referred to as the sunset terminator.
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The variances around SRT and SST are caused T by the interference of different propagating
waves, such as the ground wave and the sky wave. Notably, significant shifts in the TTs from
the adjacent or neighboring days’ TTs are considered as possible precursors to seismic activity.
The TTM also exhibits flexibility in its approach. A sliding window of +2 days (five days
altogether) is used for calculating running means of time series t,,, and t,, for the morning and
evening terminators respectively.

Finally, the running mean time series are subtracted from the respective TT time series to
form the residual TT time series dt,,, = t,, — (t,,) and dt, = t, — (t.)

The VLF-daylength is calculated as Dy, r = t, — t,,, as the time difference between evening

and morning terminator times, and the running mean time series Dy as

dDVLF = Dyrr — <DVLF>- [18] (1)

2.3. Nighttime Fluctuation Method (NFM)

Nighttime Fluctuation Method (NFM) is an approach used to study geophysical and
environmental parameters during the night, focusing on fluctuations in electric fields in the
ionosphere, lonospheric activity, and data from ground-based sensors. The above data is
collected and analyzed in order to detect geophysical and seismic events.

The basic assumption is that nighttime measurements of the ionospheric conditions are more
stable compared to the day due to noise and human activity, thus making it easier to identify
subtle anomalies that could indicate the possibility of an upcoming earthquake. This can be
achieved by detecting alterations such as increase and decrease of ionospheric activity. The
procedure involves processing raw nighttime amplitude data obtained from daily variation in
the amplitude signal. It is necessary to select a specific night period to ensure enough data is
collected while excluding daytime periods that are more susceptible to anthropogenic noise.

For better analysis, terminator time represented by minimum amplitudes is excluded from the
night interval. lonosphere-influencing extreme events may change terminator times and these
shifts are analyzed separately. Once the appropriate nighttime interval has been identified,
mean value of amplitude data over =15 days sliding window (with center at the day of interest)
including the day of interest itself is calculated. This windowing technique minimizes long
term variations, thus allowing focus on short-term fluctuations.

The equation for residual variation in amplitude is as follows:

dA(t)=A(t)—(A(t)), )
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where A(t) represents the amplitude at time ¢ and (A(t)) denotes mean amplitude over the
sliding window.

The daily values of three parameters are calculated as below:

Ne da 3
TR = 2440 3)
Ne=Ns
where TR is the mean value of dA(t), and N, and N, are the selected nighttime start and end
times respectively. 6]

DP = \/ﬁ SNe(dA(t) ~ TRY, )

where DP is actually the standard deviation of dA(t).

Ne )
NF = Z(dA(t))z
Ng
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3. Data

Receivers are positioned across various regions of Japan, with the map generated from precise
coordinates in our dataset.

T
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Figure 1: Map of the wider area around Japan showing the 8 subionospheric
propagation paths of the EAL VLF network. [*%!
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Figure 2: Map of the wider area around Japan showing the 11 subionospheric
propagation paths of the Hi-Sem VLF network [¢]

We used data in CSVs from these 19 receivers that include the transmitter's name along with
each receiver's name and the range of the y-axis in dB. For example, we have
"JJI_NSB_85 50." Furthermore, the selected nighttime interval is 20:30-02:30 LT, which is
common for all sub-ionospheric paths and throughout the year. Additionally, parts of the
nighttime data were excluded where the transmitter was "off" (i.e., the recording was noise) or
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there was high noise. Other parts were excluded due to temporal overlap with geomagnetic
storms (Dst < -50 nT and Kp > 5) and solar flares (C, M, and X classes).

For the data processed with NFM (see figure 2), we have the three statistical normalized
parameters: Trend, Dispersion, and NF The analysis was conducted based on the nighttime
signal amplitude from the images. Nineteen csv files were used as input which were later

combined to gather all the information. The NFM csv file structure is the following:

The 1st column is the date.

Date Trend
2014-01-31 -0.785869
2014-02-01 -0.839924
2014-02-02 -1.185717
2014-02-03 -0.797102
2014-02-04 -1.205561

The 2nd column is the normalized Trend.
The 3rd column is the normalized Dispersion.
The 4th column is the normalized Nighttime fluctuation (NF).

Dispersion

-0.013816
-0.687260

2465516
-0.774903

2448145

NF
-0.429489
-0.606656

1.258553
-0.531919
1.433150

Filename
AKT
AKT
AKT
AKT
AKT

Figure 3: Data sample of the NFM data utilized
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Filename
KRY 1386
HMT 1196
KMK 1186
TYH 1188
STU 1186
N5B 1186
KTU 1186
AKT 1100
IMZ 1186
ANA
ITO
TGN
NMR
KKT
SRH
TRG

Figure 4: Record count pre receiver for NFM

The time series plot shows significant fluctuations in Trend, Dispersion, and NF over time. No
clear periodicity or seasonal patterns are evident by looking at the diagrams.

Time Series Plot of Trend, Dispersion, and NF

—— Trend
Dispersion
— NF

Values

-2

A
@ r& r& & & &
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%

Figure 5: Timeseries visualization of the different metrics for NFM

The diagrams below suggest that Trend follows a roughly normal distribution, centered around
zero. Dispersion and NF are skewed slightly to the left, indicating that most NF values are
small, but occasionally high values exist in both dispersion and NF. The distributions appear

UNIWA, DEPT OF ELECTRICAL & ELECTRONICS ENGINEERING, DIPLOMA THESIS, DIMITRIOS PANAGIOTIS
BITCHAVAS
20



Development of a machine/deep learning model for the estimation of the probability for a strong earthquake
to occur, based on the recordings of a VLF/LF ground-based stations network.

dense around their mean values, indicating that the majority of the data lies within a standard
range.

Trend Distribution Dispersion Distribution

NF Distribution
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Figure 6: Distribution for the different metrics for NFM
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The Boxplot diagrams in Figure 7 indicate that several outliers are present, especially in
Dispersion and NF, suggesting certain filenames may have unusual or extreme records. The
median values across filenames are relatively stable, indicating no drastic shifts in overall
central tendency.

Boxplot of Trend per Filename

Boxplot of Dispersion per Filename

Boxplot of NF per Filename
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Figure 7: Boxplots for the different NFM Metrics per receiver,
the dots outside the boxplots represent outliers per receiver
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Additionally we used data on the seasonal variation of terminator times and daylength. The
data was provided in 3 csv files per receiver, one for the morning, one for the evening and one
for the daylength values. A total of 54 csv items were combined to gather all the information
using as keys the Date and the Filename

The combined data contained the following information:
e The 1st column is the Date in Local Time.
e The 2nd column is "morning TT" (Morning Terminator Time).
e The 3rd column is "evening TT" (Evening Terminator Time).
e The 4th column is "daylength™.

Date Value dayl Filename Value ev Value mo

2014-04-01 11.89884 AKT NaM NaM
2014-04-01 NaM AKT 17.600859 MaM
2014-04-01 WEL AKT MaM  5.702019
2014-04-01 NaN ANA NaM NaM
2014-04-01 NaM AMA  17.557179 MaM

Figure 8: Seasonal variation Data Sample

Filename record count
KRY 3843
HMT 3592
TGN 3472
TYH 3462
5Tu 3462
IMZ 3468
KMK 3468
AKT 3418
ANA 3388
KTu 320
N5B }2¢
NMR 23
TRG 193¢
WKN 1674
KOC
5RH
KKT
AMR

Figure 9: Record count pre receiver for daylength

The diagrams below suggest that the distribution of Value_day is right-skewed (positively
skewed), meaning that lower values are less frequent, while higher values occur more often.
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The distribution of Value_ev is slightly right-skewed, but it is more symmetric compared to
Value_day. Value_mo is also right-skewed with a longer tail on the right, meaning some values
are much higher but occur infrequently.

Value_dayl Distribution Value_ev Distribution Value_mo Distribution
700

800 B
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600 =——REH
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300 1
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\ 200 / 200
100
8 10 12 14 18 16 17 18 19 20 4 5 6 7 8 9
Value_dayl Value_ev Value_mo

Count
Count

Figure 10: Distribution for the different metrics for Daylength

The Boxplot diagrams in Figure 11 indicate Variability across receivers. There are outliers
present, especially in Value_day, which may indicate anomalies or fluctuations in the dataset.
The Value_ev presents a relatively more stable distribution which suggests it is more consistent
compared to the other two variables.

Boxplot of Value_dayl per Filename Boxplot of Value_ev per Filename Boxplot of Value_mo per Filename
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Figure 11: Boxplots for the different Daylength Metrics per receiver

Segments have been discarded from the data as there was abnormal winter dispersion, outliers,
and temporal overlap with geomagnetic storms and solar flares. Furthermore, another category
labeled ‘corrupted data’ includes data in which no terminator times (TTs) could be defined
because of the absence of signal, noise, or the signal’s form.[¢]

For the case of earthquakes, data have been obtained from JMA national catalog filtering for
earthquakes with Magnitude metric greater than 4.5 and focal depth less or equal to 50
kilometers. Following that, filtering of the sub-ionospheric paths was done separately for each
path considering only the earthquakes located within the 5th zone of Fresnel diffraction.
Moreover, the critical radius of the Fresnel zone intersection with the seismic zone also needed
to be taken into account. The 5th Fresnel zone is a region of wave propagation that contains
the impact of additional diffraction on the signal caused by seismic activity. It is one of the
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higher order Fresnel zones and for this reason, it is expected interference of waves within the
zone can produce measurable disturbance of the ionosphere.[*]

The Earthquake data was provided in nineteen csv files which were combined, containing the
following information:
e The 1st column is the date and time in local time.
The 2nd column is the Earthquake Magnitude.
The 3rd column is the Longitude.
The 4th column is Latitude.
The 5th column is the focal Depth of the earthquake.

Date [ Magnitude i Longitude Depth Filename

2014-08-29 14 b 32. 18 AKT
2014-08-29 32 S 3 2.143333 i 19 AKT
2014-11-22  22:08: I 36.69166666666f 137.89 5 AKT
2014-11-22  22:37:49 : 36.7783 333 137. 3 AKT
2015-02-06  10:25:12 1 33.7333 333 134.37 11 AKT

Figure 12: Earthquake Data Sample.

Filename record count
NMR 248
NSB 286
TGN
AMR
KKT
AKT
WKN
KMK
KTu

IMZ
5TuU
ITO
HMT

Figure 13: Record count pre receiver for Eearthquake data
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4. Strategic Approaches for Data Preparation and Model
Optimization

The most important goal of our project was to identify the best combination of techniques
which allow us to create a system that can predict the occurrence of seismic events with a good
deal of accuracy. Given the importance of the goal, we tried to calibrate before and during data
modeling and even employed less sensitive techniques, in order to increase the chances of
identifying any relationships that would suggest an earthquake is likely to happen.

In order to accomplish our objective and build competent models, we utilized certain strategies:

e Data Analysis & Data Cleansing: Validates data accuracy and integrity by eliminating
noise, outliers, and missing values, thus making it appropriate for analysis.

e Data Balancing: Prevention of biased predictions through the use of Balancing
techniques to ensure that all classes in the dataset (earthquakes and non-earthquakes)
are adequately represented.

e Feature Selection: This step details the relevant features (or variables) needed in
relation to an Earthquake prediction, which raises the accuracy of the model while
improving interpretability because of noise reduction and dimensionality constriction.

e Modeling & Hyperparameter Tuning: It also includes the selection of appropriate
machine learning models like LSTM, GRU, CNN, LSTM, etc. and the tuning of
hyperparameters to achieve maximum accuracy and optimize performance of the model
in regard to the data provided.
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4.1 Data analysis - Data cleaning

Percentage of empty values per column:

Date
Filename
Value_dayl
Value ev
Value_mo
Time
Magnitude
Latitude
Longitude
Depth
Trend
Dispersion
NF

Angle from_transmitter
Distance from transmitter
receiver long
receiver lat

flag EQ

Receiver AKT

Receiver_ AMR

Receiver ANA

Receiver HMT

. Baeeas
. 8880080
6.163312
1.162573
. 541665
.377516

.377516

B B2 R
A\ A\ A\

.377516

8. 377516
.377516

9819

. Beeeao
. Beeeae
.Baeeas
. Baeeaa
. Baeeas
. 8880080
. Beeeao
. Beeeao
. Beeeao

Figure 14: Commulative data overview

A combination of the existing datasets with the aim
of having one dataset that contains all the
information of the other datasets, allows for
improving the understanding of the information
offered. This enables one to properly analyze the
data, find missing values, or outlier data — For these
reasons and to achieve a better understanding of the
information captured by each receiver, we first
created a single consolidated dataset. For this
purpose, all the datasets were combined using the
dates and the receivers for each specific dataset as
the keys.

When available, latitude and longitude values were
adjusted to coordinates. Additionally, recognizing
the potential importance of distinguishing that each
data point comes from a certain receiver, each
receiver was given flag columns. All the
information was then captured in a single final data
frame where the following was the output.

The columns Time, Magnitude, Latitude, Longitude, and Depth are only populated during a
reported/recorded earthquake. Because of this, these columns were omitted from the dataset
and were changed to an earthquake flag as their model features selection would introduce a

bias into the model.
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4.2. Balancing techniques

From the graphs below it is evident that our data is imbalanced as the number of negative
events is much larger than the number of positive events, in specific only 9.6% of our data
are positive earthquake events
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Figure 15: Chart of values daylight in relation to positive earthquake positive events.

In the context of machine learning, an imbalanced dataset is when the instances of a class
exceed that of another class by a large margin. As an illustration, consider seismic events as
the primary class and non-seismic events as the secondary class. In earthquake prediction, the
former class occurs far less often, thus resulting in a skewed model training which will produce
biased predictions and poor performance metrics for the minority class.

An Imbalanced Dataset causes Challenges in modeling, as mentioned above. In our case we
are trying to predict the minority class (positive earthquake occurrences) and to avoid having
biased predictions and poor performance metrics we had to manipulate the data to produce a
more consistent and robust training dataset.

The challenges we faced due to the Imbalanced Dataset are
e Model Bias: Majority Class is Preferred: With the majority of classes in a dataset,

machine learning models seek to minimize overall error distribution often resulting in
prioritized class predictions more frequently. The result is often a lower recall and
precision measure which is the opposite of what the analysis aims to achieve.
Misleading Metrics: Performance accuracy and other standard metrics can be
extremely misleading. For example, in our dataset with a ratio of 91:9, a model who
predicts the only majority class achieved 98% accuracy but could not fulfill the needs
of the minority class.
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e Overfitting to Majority Class: One of the other implications of such imbalanced
datasets is that models may overfit the majority class resulting in a failure to generalize
on class instances of the minority.

e Real World Impact: In high stake situations such as the prediction of earthquakes,
erroneously classifying a minority class event and failing to detect it could lead to
catastrophic outcomes.

There are multiple strategies that have been created to alleviate the problems caused by
imbalanced datasets. These mentioned strategies include:
e Resampling Techniques:
o Over-Sampling: Creating new synthetic examples for the less represented class.
o Under-Sampling: Selecting a smaller number of observations from the
overrepresented class.
Combination Methods: Blending both over-sampling and under-sampling methods.
Algorithmic Adjustments: Applying cost-sensitive learning by increasing penalties
for the mistakes made in the training set for the minority class.
e Hybrid Approaches: Integrating data and algorithm methods to achieve better
performance with biased datasets.

For earthquake prediction, a dataset representing the occurrence of seismic events is usually
heavily imbalanced which makes it one of the most difficult tasks due to the scarcity of the
disasters.

This imbalance can be dealt with very effectively by deploying machine learning:
e Better recall and precision for earthquakes determined in the datasets.
e Less false negatives when a particular marker is missed that indicates a pinnacle to an
earthquake.
e Better trustworthiness of models when applied to the ground reality builds this in a
large-scale manner.

In our case we decided to test two different methods of handling the imbalanced dataset and
compare results to identify the methods that produce a better outcome for our data. In particular
we tested INOS (Interpolation-Based Oversampling) and ESPO (Edge-Based Synthetic
Minority Oversampling).[*!

4.2.1. INOS (Interpolation-Based Oversampling)

Informative Over-Sampling, or InOS, focuses on the improvement of the predictive
performance of a model through the augmentation of the minority class in class imbalanced
datasets. InOS differs from conventional methods in that it seeks to produce domain driving
informative time-series samples, ensuring an allocation of the original data distribution. This
method is quite useful in the prediction of extreme but rare events like earthquakes.
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The steps we implemented to perform INOS are the following:

e Identification of the Minority Class: Analysis of the dataset to determine the minority
event classes such as seismic events.

e Evaluation and determination of the level of unbalance within the dataset using the
imbalance ratio.

e Feature Space Analysis: Analysis of the features in the majority class and features of
the class with fewer samples,
Clustering: Identification of feature space regions with a high density of class samples.
Generation of Synthetic Samples: Generation of New samples by using a mixture of
features from the few samples in that cluster to increase the sample size of that class.

InOS creates synthetic examples that are realistic and informative as they are created by sample
points in the neighborhoods without disturbing the original data structure. Using informatic or
statistical techniques to guide the creation of the synthetic examples to be representative of the
patterns seen in the underrepresented class, we were able to prevent the creation of unnecessary
or irrelevant samples which could potentially lower the performance of the model’s predictions
such as precision and recall. After the addition of the synthetic samples into the original data
set, the class distribution is much more even.

In our case, after implementing INOS, our dataset gained the following characteristics:
e |t created realistic simulated samples of what one could expect before the shock occurs,
keeping intact the statistical characteristics of the minority group.
e It controlled the exposure of the models to samples that create noise and very simplistic
samples reducing the risk of over-fitting.
e |t increased the model’s sensitivity to important events that are infrequent, improving
the recall and diminishing the false negatives.

Data Before Balancing Data After Balancing

EQ (1)

No EQ (0) No EQ (0)

Flag_EQ
® EQFlag=1 ® EQFlag=0

Figure 16: Pre vs Post INOS Positive EQ events ratio.
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Value_dayl Over Time Before Balancing
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Figure 17:Per vs Post INOS Optimization WEQ Positive events

4.2.2. ESPO (Edge-Based Synthetic Minority Oversampling)

ESPO refers to Edge-Based Synthetic Minority Oversampling, which is a technique of data
augmentation used to address the problems of class imbalance by creating synthetic samples
along the boundaries of the minority class distribution. ESPQO's initial step is to increase the
class boundary of the decision-making boundary or border. This is unlike traditional methods
such as SMOTE, which “dissolve” all instances of minority class to create new samples. This
addresses the underrepresentation issue. Because ESPO aims to improve the classification
accuracy, it works best in datasets in which the boundaries of the minority class are sparse and
achieving precision in classification is crucial.

In our case we performed the following steps to handle the dataset Imbalance using ESPO:

Identification of Minority Class and Edges: Examined the data and focused on the
edges of the minority class while also figuring out the class imbalance ratio.
Utilization of k-nearest neighbors (k-NN) to identify the instances that are located
closer to the boundary of the minority class.

Selected Pairs for Interpolation: Identified and paired together instances that are
considered edge instances for interpolation.

Choose pairs that are located closer to the decision boundary and regions with lower
concentration of minority class instances.
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Created Artificial Samples: Interpolation of new instances between the given edge
instances to ensure that the produced instances are close to the edge while still being in
the realistic distribution boundaries of the minority class.

Refined Artificial Samples: The synthetic samples needed to be verified using some
domain knowledge or constraints, such as their relevance towards the actual problem
within context (seismic precursors to earthquake forecasting).

Augmented the Dataset: Included the artificial samples to the minority class. This
resulted in a more balanced dataset.

Model Training and Evaluation: Trained the model with the augmented dataset
focusing on recall, Fl-score and AUC-ROC metrics for the minority class
improvements.

Why we use ESPO on Earthquake Prediction: When ESPO is applied to the areas of
earthquake prediction, prediction accuracy is much higher for the following reasons:

Focuses on edge instances, which best helps delineate the border between seismic and
non-seismic phenomena, which is critical in event characterization.

Produces synthetic samples which enhance model sensitivity in these regions,
therefore increasing recall and reducing false negatives.

Helps achieve the preservation of the minority class distribution, ensuring that the
produced synthetic data is credible and useful.

Data Before Balancing Data After Balancing

EQ (1)

No EQ (0)

No EQ (0)

Flag_EQ
® EQFlag=1 ® EQFlag=0

Figure 18: Pre vs Post ESPO Optimization Positive EQ ratio

4.2.3. Combination of INOS and ESPO

In concert with the best features of INOS and ESPO, we adopted a hybrid method that joins
their strengths together. INOS produces highly believable and statistical driven synthetic
samples by interpolating dense regions of the minority class feature space, whereas ESPO
performs better on boundaries to increase accuracy and reduce false negatives. These methods
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together gave us a dataset that has domain-representative samples balanced with edge focused
enhancements. This combination improved recall, F1 score, and model bias in a more positive

direction leading to a robust prediction framework for earthquakes.
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Figure 19: Pre vs Post ESPO Optimization Positive EQ events

The combination of the two methods further increased the Minority Sample percentage thus

creating a more robust dataset.
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Figure 20: Pre vs Post Optimization Positive EQ ratio of the combination of INOS and ESPO
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4.3. Feature selection

Before training our models into the earthquake data, we implemented different methods to
identify the features that were most relevant in order to reduce complexity, minimize
overfitting, and enhance interpretability. Owing to the dataset complexity and scale, a
systematic feature selection approach was necessary, allowing isolating the most relevant
variables for seismic events prediction. In this chapter, we present the methods of feature
selection applied, SHAP and Recursive Feature Elimination (RFE) in particular. With these,
we have been able to assess separately the contribution of every feature and arrange the models
in accordance with the most significant predictors. These tests proved beneficial not only in
reducing the model training time but also in exposing what was truly driving the predictions
made by the models and contributed to building models that were reliable and free from bias.

4.3.1. SHAP (SHapley Additive exPlanations) values

SHAP (SHapley Additive exPlanations) is a certain output from a machine learning mode. It
provides an inclusive approach to the use of cooperative game theory, which involves the use
of Shapley values, to complement a specific prediction by assigning an importance to each
feature involved. These weights serve as a measure of a feature’s impact and thus serve the
purpose of making complex models easier to understand

SHAP values are calculated based on all possible combinations of features in the model and
measuring the additional value that outstanding features bring to the prediction of the model:
e Model Agnostic: SHAP can be used in any kind of machine learning model, be it a
linear regression to a nonlinear XGBoost and even random forest which is considered
to be complex.
e Additivity: For each feature in the instance, it is measured that the total SHAP values
add up to the output of the model minus the average prediction (baseline).
e Fairness: Feature contributions are made in an equitable manner using basic alliances
mechanisms in game theory.

The key concepts of the SHAP are shown below:

e Shapley Values: These were originally derived from cooperative game theory where
all the features that helped make a prediction having a go before the “pay” is made to
every single one of them equally.

e Baseline Prediction: This estimates what the model will predict, when there are no
input features available, which is an average of the output to be trained.

e [Feature Contribution: Shapley Heuristic additively approximates the contributions of
entire features to or from the baseline prediction.

In our case we applied SHAP in Feature Selection with the below steps:
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e Feature Importance Ranking: Ranked by their SHAP values, features were ordered
according to their impact in the models’ predictions. To reduce the complexity in the
model, features with low average SHAP values were ignored.

e Visualizing Feature Impact: Features were evaluated according to their degree of
importance and interaction by showing the distribution of shap values across the dataset
for every feature. So, we were able to pinpoint features that are significantly relevant
to the prediction by tracking how the shap values vary in relation to various features
being combined.

Pros of SHAP in earthquake prediction:
e Works for any Model: Is useful for any kind of prediction model.
e Global and Local Interpretability: Gives insight into an individual prediction(local)
and also gives an insight into how the model performs overall(global).
e Fairness: Explains mathematically a fair mechanism to approve the feature
contributions.

Cons of SHAP in earthquake prediction:
e Costly: Deriving exact SHAP values tends to be time-consuming and an expensive
exercise mostly with complex models and large data sets.
e Underpinning Approximations: There are simpler approaches such as TreeSHAP or
KernelSHAP that perform the calculation, but only approximate the Shapley values
with Shapley values, which entails some loss of accuracy.*°

4.3.2. Recursive Feature Elimination (RFE)

Recursive Feature Elimination (RFE) is a feature selection method that aims to determine the
best predictors for a particular machine learning model. RFE performs this by taking a model
and removing the features that are the least useful, and then re-training the model on the
remaining features. This process is repeated until a certain number of features have been
chosen, or other performance-related criteria have been met.

RFE adopts a particularly structured approach to feature ranking and elimination of those
features that do the least towards enhancing the performance of the model in the following
steps:

1. Train model: The machine learning model (linear regression, Random Forest, SVM,
etc.) is trained on the dataset with all features.

2. Ranking Features: During this training session, the model sets scores to the features
relative to their importance (linear models contain coefficients; tree-based models
incorporate feature importance scores).

3. Removing Features: The model is retrained after excluding the least important
feature(s) of the model.

4. Repeat: Perform Step 2 and Step 3 until optimal features are reached or the model starts
to decrease in performance.
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The application of RFE in our dataset produced the following results:

RFE shrunk the predictor space by targeting only the most important features that
needed to be used. This reduced overfitting and could save the costs involved in
computations, in particular on high-dimensional data.

Feature Ranking: RFE develops a ranked list of features that were used pertaining to
the model’s performance. The prediction tasks that have the highest rank were given
the topmost gears.

Model Optimization: RFE took care of the elimination of irrelevant or redundant
features which helped in the interpretation of the model and also improved the accuracy
considerably.

Advantages of RFE:

Model-Specific Feature Importance: RFE analyzes the model at hand and uses
suitable features to that model so that it does not make any mistakes on that model.
Scalability: RFE is an approach that can be used in different arbitrary types of machine
learning models.

Improved Performance: RFE is useful in removing the noise or the undesirable
features making the generalization of the model relatively better as well as reducing
overfitting.

Limitations of RFE:
e Computational Cost: RFE has the disadvantage of retraining the model many times,

thus this takes a long time for big datasets and heavily parameterized models.
Dependency on Initial Model: The RFE scales to how good the model specified in the
rank ordering of the feature was. For example, tree-based models may rank the features
differently than some linear models.

Risk of Over-Elimination: Over-Removing features can risk cutting out relevant
features that have a minimum contribution to the prediction.!*!]
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5. Modeling

This chapter describes the machine learning models which were trained and tested with a view
to predicting earthquakes. In carrying out this work, both deep learning structures as well as
traditional machine learning structures were developed and compared. The chosen models are
sufficiently different from one another and are each tailored to give optimal results with time
series data, inter-feature relations, and predicting times.

Deep learning models include Long Short Term Memory (LSTM), Gated Recurrent Unit
(GRU), Convolutional Neural Networks (CNNs), and Recurrent Neural Networks (RNNSs).
These architectures were selected because of their successful dependability to model temporal
relationships and derive intricate structures from ordered data which is essential in earthquake
prediction.

Also, the deep learning models, traditional machine learning algorithms such as Random
Forest, K-Nearest Neighbors (KNN), XGBoost, and Gaussian Process were trained and tested.
These models offer different strategies that do not demand High Performance Computing and
large amounts of data but are still reasonably good.

Every model is discussed in the next sections, including their architectural design and
significant features and the rationale behind their selection. This comparison and assessment
clearly bring out the strengths and weaknesses of all the models providing great insight into
their use in earthquake prediction.

5.1. Long Short-Term Memory (LSTM)

How LSTMs Work: Long Short-Term Memory (LSTM) networks are a type of recurrent
neural network (RNN) designed to handle sequential information by capturing long-term
dependencies. Traditional RNNs often suffer from the vanishing gradient problem making it
difficult for them to learn relationships over extended sequences. LSTMs solve this by
incorporating memory cells and gating mechanisms that enable selective storing or
forgetting.[*%]

Crucial parts of an LSTM model include:

e Forget Gate: Decides which portions of prior information should be thrown away so
as to ensure the model concentrates on relevant facts.

e Input Gate: Determines what new data should be saved in the memory thus allowing
the model to effectively assimilate recent observations.

* Output Gate: Controls how much of the memory is used in generating output or passed
to the next step thereby providing contextually informed predictions made by the
model.]
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Thus, these features make LSTMs capable of capturing both short and long term dependencies
hence they are suitable for time series data such as seismic or atmospheric signals.

This study uses LSTMs to forecast earthquake incidences through the analysis of sequential
data. The input data is a series of historical time steps which assist the model in identifying
relationships with seismic events.[*%

Input Data: Sequences like ionospheric anomalies are sent into an LSTM model.

Training Process: LSTM learns temporal dependencies by iterating through multiple time
steps, capturing patterns that may indicate precursors to Earthquakes.™

Prediction: Given new data, the trained LSTM looks back on its previous observations and
can tell whether there is a possibility of earthquake or not.[*®!

5.2. Gated Recurrent Unit (GRU)

Gated Recurrent Units (GRUS) are a variant of recurrent neural networks (RNNs), which were
simplified in order to fix the issues with previous RNN models, such as vanishing gradient
problem, while also providing more straightforward design compared to Long Short-Term
Memory (LSTM) networks. By reducing the number of gates and parameters, GRUs have
shown that they can be efficient without compromising on their ability to capture long-term
dependencies.

There are two parts in the GRU architecture:
e Update Gate: This determines how much of past information should be preserved in
the present hidden state. It balances the relevance of past and actual inputs.
e Reset Gate: When calculating the new candidate hidden state, it decides how much of
the previous information to erase out. This upholds flexibility for recent changes in
input sequences.

Unlike LSTMs, GRUs do not employ an additional memory cell thus simplifying them whilst
still allowing them to model both short and long term dependencies. [

Within this study, the GRUs are applied to analyze and predict earthquakes by modeling their
ability to simulate temporal patterns in this kind of data. Since they are efficient and simple,
GRUs can handle huge datasets or applications that require faster training.

Data Input: The GRU model takes sequential data such as seismic signals or ionospheric
anomalies for analysis.

Training: The GRU identifies patterns among input sequences associated with seismic
activities, hence improving its ability to make predictions.[
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5.3. Convolutional Neural Network (CNN)

CNNs, Convolutional Neural Networks, are a type of deep learning model constructed to
handle structured data such as grid-like data or images. Its abilities in the recognition of spatial
and temporal patterns make it highly effective for feature extraction when dealing with tasks
like image classification and time series.[']

The major components constituting CNNs are as follows:

e Convolutional Layers: These are layers with filters (kernels) that slide over input data
and identify local patterns. The key features of the input like edges in images or
temporal patterns in signals can be highlighted by these filters creating feature maps.

e Pooling Layers: Retaining important information while reducing computational
complexity is what pooling layers do to spatial dimensions of feature maps. In this step,
small variations of the input should not affect results significantly (Bengio et al., 2013).

e Fully Connected Layers: Fully connected layers map extracted features during feature
extraction to output predictions whether classification or regression.

In this study, we apply CNNs for earthquake prediction on spatial or temporal grids structured
data. Hierarchical structure of CNNs helps them to interpret meaningful patterns within the
input data e.g. changes in atmospheric signals. We have data which is structured as grids or
sequences to represent spatiotemporal nature of observed phenomena.

Feature Extraction: The convolutional layers detect patterns such as discontinuities or
relationships that may indicate seismic activity.

Prediction: The fully connected layers will use the extracted features to predict the chance,
place, and size of earthquakes.

5.4. Recurrent Neural Network (RNN)

Recurrent Neural Networks (RNNSs) are a type of neural network designed for sequential data
processing. Unlike ordinary feed-forward networks, they contain feedback loops that
remember past inputs and thus can represent temporal dependencies and patterns.

At each time step, present input is taken along with the prior hidden state by the RNN. As far
as remembrance of what went before is concerned, this concealed status serves as the memory
of the network. The net’s output at every time step will be influenced by both current
information and all previously accumulated memories. Although recurrent neural networks
learn well during short term relations, they usually fail to capture long-term dependencies due
to problems such as vanishing gradients.[?!
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This research will employ RNNSs in earthquake prediction given its sequential nature. They are
useful in analyzing seismic signals or atmospheric anomalies because they have a capacity for
capturing temporal links.

e Input Data: This is when data flows continuously into an RNN like ionospheric
variations or seismic signal measurements over time.

e Training Process: The RNN learns to connect definite templates in the sequence with
seismic activity, using feedback loops to include interconnections across many time
steps.

e Prediction: After training, the RNN ascertains chances of an earthquake happening
from new input sequences by taking advantage of its remembrance of previous data.®!

5.5. Random Forest

Random Forest is a machine learning technique that combines many decision trees to improve
predictive precision and robustness. It is done by constructing a bunch (forest) of decision trees
during training and collecting their predictions (through majority voting for classification or
averaging for regression) into one final result. Random Forest relies on two elements:
bootstrapping and random feature selection:

Bootstrapping (Bagging): Every single decision tree is constructed based on a randomly
chosen fraction of the training data with replacements. This ensures different trees resulting in
reduced overfitting.

Random Feature Selection: While making each split in a decision tree only some features are
considered instead of considering all features. Thus, reducing correlation among trees thereby
boosting generalization.

Random forest averages predictions from numerous trees so as to minimize errors arising
from overfitting to specific samples or variables.E!

5.6. K-Nearest Neighbors

K-Nearest Neighbors (k-NN) is a simple, but effective algorithm in classification and
regression. Hence, it uses the principle of instance-based learning, which makes predictions for
new data points with respect to their likeness with already existing data points in the training
set. The algorithm does not need any form of training; instead, it just relies on memory.[®!

Essential Steps in k-NN:
e Distance Calculation: This includes finding the distance between a new data point and
all the points present in the training dataset.
e Finding neighbors: By use of k closest data points that are associated with a novel
instance are taken as its neighbours.
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e Prediction: Among the k nearest neighbours, prediction is that whose class is majority
one.

5.7. XGBoost

XGBoost (Extreme Gradient Boosting) is a very sophisticated ensemble machine learning
model applicable for both classification and regression tasks. It is based on the paradigm of
gradient boosting where models are built in an auto-regressive manner whereby each new
model is built with the intention of correcting the mistakes of the last one. XGBoost makes
advancements like regularization, parallel processing, and tree building optimization which
enables its users to build much quicker and accurate solutions as compared to just gradient
boosting.

In XGBoost the main steps include:

e Model Initialization: Algorithm computes base learner such as predictions for
regression could be the mean or for classification the most common category.

e Gradient Calculation: In every iteration, the model computes the gradient of the loss
function for each training example as a measure of how the model is currently
predicting compared to the actual value.

e Tree Construction: A decision tree is constructed in order to limit the value of the loss
function where the calculated gradients act as weights for the splits.

e Model Update: The predictions from the new tree are appended to the previous
ensemble and hence the quality of the overall prediction is enhanced.

e Regularization: XGBoost implements L1 and L2 regularization during the model
training stage to limit the model complexity and hence eliminate overfitting.

5.8. Gaussian Process

Gaussian Processes constitute a class of probabilistic non-parametric models which can be used
for regression and classification tasks. Instead of a direct output prediction, GP’s model a
distribution of functions that can explain the data, making it a useful and uncertainty-informed
approach (Rasmussen & Williams, 2006).

Key Concepts of Gaussian Processes:

e Prior Distribution: There is a belief that GP models function values which are
multivariate Gaussian variables. Said belief is formed after observing the data and this
function is an estimated mean function with zero and a kernel type function.

e Kernel (Covariance) Function: Data points that are in closer proximity are weighted
more heavily than outlying data points, which is determined by the kernel function.
Well known kernels are the radial basis function (RBF) and Matérn kernel.

e Posterior Distribution: A posterior distribution is therefore defined as the distribution
which is obtained through multiplication of the prior distributions with a given
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likelihood of the data function and a model. This posterior serves to refine the earlier
guesses which were made regarding the underlying function that generated the data.

6. Model Optimization Methods

In order to achieve the optimal modeling results we tried to improve model accuracy by
utilizing optimization methods and techniques. This chapter covers different methods of model
optimization with an emphasis on hyperparameter adjustment and search strategies.
Hyperparameter adjustment is one of the most important parts in adjusting a model’s accuracy
level, preventing it from overfitting or underfitting, and saving on computation power. Among
the numerous methods, grid search is presented as the most organized technique for
determining the best combination of hyperparameters by systematically examining all preset
configurations in order to enhance accuracy and reliability. In undertaking these approaches,
we hope to optimize the models for broader application and use in tremor forecasting.

6.1. Hyperparameter tuning

Hyperparameter tuning refers to the procedure of selecting the best values of a model’s
hyperparameters for a task. In contrast to model parameters such as weights in a neural network
learned through training, hyperparameters that define the learning are set. These include the
learning rates, layers or units in neural networks, the depth of decision trees, or the number of
estimators in the case of ensemble methods.?!

Hyperparameters significantly affect the performance of the model and its ability to generalize.
It goes without saying that hyperparameters must be well optimized for performance to
improve. U]

Good hyperparameters can for example.

e Improve Accuracy: So long as a suitable hyperparameter is constantly utilized, it
results in better performance in most predictions anyways.

e Prevent Overfitting or Underfitting: If, entirely for example, the regularization
parameter is exceedingly high, it could easily lead to under fitting, conversely if it is
lower the former becomes overfitting.

e Optimize Computational Resources: Hyperparameters like batch size, or the number
of estimators when properly suited can be said to help decrease time and memory
consumption during training.

e Ensure Robustness: To be applicable in real life models that have been fitted needs to
be able to provide performance when data that it has never been exposed to is provided.
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6.2. Grid Search

Grid search is a type of methodical search used for hyperparameter optimization to such a depth
of which each parameter within a specific set would be scanned. The thorough optimization
would initiate for a desired model till all combinations have been checked.**!

Each combination is tested with performance measures:

Systematic Exploration: The Grid search guarantees the usage of every combination
within the set parameters during the model building phase thus ensuring no
combinations are missed or ignored.

Optimizing Model Performance: Since multiple combinations will be checked
through the Grid Search process the best combination of the hyper parameters to
increase the performance would be sought.

Reproducibility: Considering the systematic and extensive nature of the grid search
tuning process, replication of the process for the purposes of research and operational
usage is effortless.

Hidden Size: The number of neurons in the hidden layers of a neural network,
determining its capacity to learn complex patterns.

Batch Size: The number of training samples processed together in a single forward and
backward pass.

Epochs: The number of complete passes through the entire training dataset during
training.

Learning Rate: The step size that controls how much the model’s weights are updated
during training.[*®
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In our case, we tested every hyperparameter combination by training the models multiple times
in order to find the best performing combination for each model.

Model

LSTM

GRU

CNN

RNN

Random
Forest

K-Nearest
Neighbors

XGBoost

Gaussian
Process

Table 1: Grid Search parameters

Tuned Hyperparameters

Hidden Size: [64, 128, 256]
Learning Rate: [0.01, 0.001, 0.0001]
Batch Size: [16, 32, 64]

Dropout Rate: [0.1, 0.2, 0.5]

Layers: [1, 2, 3]

Hidden Size: [64, 128, 256]
Learning Rate: [0.01, 0.001, 0.0001]
Batch Size: [16, 32, 64]

Dropout Rate: [0.1, 0.2, 0.5]

Layers: [1, 2, 3]

Filter Size: [32, 64, 128]
Kernel Size: [3x3, 5x5]
Learning Rate: [0.01, 0.001]
Pooling Type: [max, average]

Hidden Size: [64, 128, 256]
Learning Rate: [0.01, 0.001, 0.0001]
Batch Size: [16, 32, 64]

Dropout Rate: [0.1, 0.2, 0.5]

Layers: [1, 2, 3]

Number of Trees: [50, 100, 200]
Max Depth: [5, 10, 20]

Min Samples Split: [2, 5, 10]
Number of Neighbors (k): [3, 5, 7, 9]
Distance Metric: [Euclidean, Manhattan]
Weights: [Uniform, Distance-based]

Learning Rate: [0.1, 0.01, 0.001]
Max Depth: [3, 6, 9]

Subsample Ratio: [0.8, 1.0]

Number of Estimators: [50, 100, 150]

Kernel Type: [RBF, Matern, Rational
Quadratic] Noise Level: [1e-3, 1le-2, le-1]
Length Scale: [0.1, 1.0, 10.0]

Best performing Configuration

Hidden Size: 128
Learning Rate: 0.001
Batch Size: 32
Dropout Rate: 0.2
Layers: 2

Hidden Size: 128
Learning Rate: 0.001
Batch Size: 32
Dropout Rate: 0.2
Layers: 2

Filter Size: 64
Kernel Size: 3x3
Learning Rate: 0.001
Pooling Type: max

Hidden Size: 128
Learning Rate: 0.001
Batch Size: 32
Dropout Rate: 0.2
Layers: 2

Number of Trees: 100
Max Depth: 10 Min
Samples Split: 5
Number of Neighbors: 5

Distance Metric: Euclidean Weights:
Distance-based

Learning Rate: 0.01
Max Depth: 6

Subsample Ratio: 0.8
Number of Estimators: 100

Kernel Type: RBF
Noise Level: 1e-2
Length Scale: 1.0
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7. Results

This chapter describes the performance of our machine learning models in predicting seismic
activities, including the results obtained from optimization. Several elements of model
performance, including accuracy, recall, precision, false positive rate (FPR), G-means, F1
score, Matthews correlation coefficient (MCC), and area under the curve (AUC) were assessed
for the performance of each model.

We start off with the pre-optimization results which serve as the primary evaluation of model
performance, against which the results achieved after applying the refinement techniques are
compared. Lastly, we turn to the post optimization results to validate the effects of
hyperparameter tuning and grid search strategies on overall model accuracy and reliability.

7.1. Pre-Optimization Results

Upon applying the Machine Learning Models covered in the previous chapters we collected
various performance metrics to provide a comparative overview. In this section, the results
obtained before an optimization process is applied are described with a focus on the numerous
performance measures achieved which include accuracy, recall, precision, false positive rate
(FPR), G-means, F1 score, Matthews correlation coefficient (MCC), and the area under the
curve (AUC). Resulting values shed light on every model's ability to make predictions and set
a comparison against the metrics collected after the data cleaning, feature extraction, and
model's parameters optimization.
Table 2: Modelling Pre Optimization results

False Positive

Model Accuracy Recall Precision Rate (FPR) G-means F1Score MCC AUC
LSTM 0.96 067 086 0.01 0.81 075 074 091
GRU 0.95 053 089 0.01 0.73 067 067 09
CNN 0.96 0.61 0.9 0.01 0.78 073 072 09
RNN 0.95 0.67 0.8 0.02 0.81 073 071 09
Random
0.96 068 092 0.01 0.82 078 077 0093
Forest
K-Nearest — n9) 077 057 0.06 0.85 065 062 089
Neighbors
XGBoost 0.97 0.7 0.92 0.01 0.83 079 078 091
Gaussian 0.93 073 063 0.05 0.83 067 064 083
Process
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7.2. Post-Optimization Results

Through the first assessment of machine learning models, optimization approaches were put to
the test to improve accuracy. Hyperparameter tuning and Grid search was applied to all the
Models being evaluated to optimize their results. Assuming that performing different
refinements on different parameters of the models would improve several performance
parameters like accuracy, recall, precision etc., various modeling configurations were tested,
and we have selected the best optimization output per Model.

Table 3: Modelling Post Optimization results

False Positive

Model  Accuracy Recall Precision Rate (FPR) G-means F1Score MCC  AUC
LSTM 0.96 0.7 0.88 0.01 0.83 0.77 075 092
GRU 0.96 0.56 0.9 0.01 0.74 0.7 0.69 0.9
CNN 0.96 063 092 0.01 0.79 0.76 073 001
RNN 0.96 069  0.82 0.02 0.82 0.75 072 091
Random ) o 071 0094 0.0 0.84 0.81 079 0094
Forest
K-Nearest ) g 0.79 0.6 0.05 0.86 0.69 0.63 0.9
Neighbors
XGBoost  0.97 072 004 0.0 0.85 0.82 079 094
Gaussian ) 5 076 0.66 0.04 0.85 0.71 069  0.89
Process
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8. Summary

The following evaluation metrics were used to compare the modeling results:

F1 Score: A measure of a test's accuracy which is calculated by taking both false
positives and false negatives into consideration. Especially applicable in situations
where there is a disproportionate ratio of sample elements.

AUC (Area Under the Curve): Evaluates the ability of the model to differentiate one
class from another. Positive AUC values imply a higher degree of separation between
the positive and negative classes.

Accuracy: The ratio of correctly predicted outcomes to all the predicted outcomes. For
skewed or imbalanced datasets accuracy may not be viably reliable.

Recall (Sensitivity): Measures the percentage of relevant instances that are retrieved
by the system. High recall ensures that we do miss events that actually happened.
MCC (Matthews Correlation Coefficient): Informative metric that combines true
positive, true negative, false positive and false negative results in classification tasks.

Figure 21 illustrates the F1 Scores across different models with and without hyperparameter
tuning. As shown in Figure 21, the F1 Score for all models improved after tuning was applied.
The greatest advances were noted during XGBoost, K-Closest Neighbors, Gaussian Process,
while also having meaningful improvement in LSTM, GRU, CNN, RNN. F1 is a harmonic
mean of precision and recall, which balances false positives and false negatives, which in our
case serves as a good metric since our data is indeed imbalanced.
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Figure 21: F1 Score Model comparison
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A detailed assessment of the improvements made on the F1 Score are depicted in Figure 22.
The results indicate that XGBoost attained the greatest enhancement followed in turn by K-
Nearest Neighbors and Gaussian Process. Of the deep learning models, LSTM and GRU have
shown slight improvements which signify that being optimized has made a positive impact on
their classification capability.
F1 Score Improvement After Tuning
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Figure 22: F1 Score Model Improvement

AUC (Area Under the Curve): Indicates the effectiveness in distinguishing different classes.
AUC of 1 means perfect prediction and of 0 means random guessing. As observed in Figure 23,
the AUC Score improvement analysis was highest in the Gaussian Process and XGBoost
models and further justified their utility in the earthquake prediction challenges. Whereas
LSTM, GRU and CNN also gained improvement.
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Figure 23: AUC Score Model Improvement

A cumulative analysis of the changes in Improvement for Accuracy, Recall, F1 Score, AUC,
and MCC are consolidated in Figure 24. Gaussian Process displayed the most improvement in
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AUC and MCC, while K- Nearest Neighbors had marked improvement in F1 Score. Deep
learning-based models like LSTM, GRU, and CNN had consistent enhancements for the Recall
and F1 Score Measures. It is apparent from these results that although all the models
‘performed’ better after tuning, there was a relative gain for all models.

Improvement in Model Performance Metrics After Tuning
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Figure 24: Post Optimization Model Comparison Heatmap

The heat maps depicting the correlations before and after the tuning processes are portrayed in
Figure 25. The most important points are as follows:

e After tuning, the correlation between Accuracy and F1 Score improved which showed
a positive trend as the classification model predictions became more consistent.

e The trade-off of some models that may have tried to achieve higher Recall but in return
lowered their precision is suggested through the negative trend of Recall correlation
with Accuracy.

e The improvement in the Gaussian Process and XGBoost models was further
corroborated by significantly higher correlations between AUC and MCC after tuning
which proved the efficacy of these models.
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Correlation Heatmap Before Tuning Correlation Heatmap After Tuning
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Figure 25: Pre vs Post Correlation Heatmap

Accuracy Recall F1 Score

Figure 26 presents the difference in distributions of F1 Scores before and after tunings. It can
be observed that the median performance of all of the models improved and so did the variance,
though to a smaller extent. Hence, this implies that there was an increase in reliability.

Distribution of F1 Scores Before and After Tuning
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Figure 26: Pre vs Post F1 Score Distribution range

Furthermore, in Figure 27, displays the distribution of the improvements for different metrics
which indicates that the maximum improvements were achieved in F1 Score and Recall, while
MCC and AUC had relatively smaller but still significant improvements.
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Distribution of Improvements Across Performance Metrics
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Figure 27: Distribution range for different ML metrics across Models

In this study we used advanced machine learning and deep learning techniques, balancing

methods, feature selection, and model optimization strategies. By integrating data

preparation, strategic resampling, feature engineering, and model tuning, we aimed to

enhance the predictive accuracy and reliability of various models applied to seismic data.
Table 4: Best Models per metric

Model Best in Metric Precision Recall G-means F1 Score MCC
Random Precision
Forest F1 Score 0.94 0.71 0.84 0.81 0.79
MCC
K-Nearest Recall
Neighbors G-means 0.6 0.79 0.86 0.69 0.63
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