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Περίληψη 

Η πρόβλεψη των σεισμών αποτελεί μία από τις σημαντικότερες, αλλά ταυτόχρονα εξαιρετικά 

δύσκολες προκλήσεις στον τομέα της γεωφυσικής. Η πρόβλεψη των σεισμών έχει τη 

δυνατότητα να μειώσει τους κινδύνους και να βελτιώσει τη διαχείριση καταστροφών, να 

βοηθήσει κατά τη διάρκεια μιας καταστροφής και να συμβάλει στον μετριασμό των 

επιπτώσεων. Στην παρούσα μελέτη, χρησιμοποιούνται τεχνικές μηχανικής μάθησης (ML) και 

βαθιάς μάθησης (DL) για την ανάλυση δεδομένων χρονοσειρών με σκοπό την πρόβλεψη 

σεισμικών φαινομένων. Η έρευνα αυτή μελετά την ανάπτυξη μεθόδων στην υπολογιστική 

επεξεργασία, προκειμένου να ανιχνευθούν δείκτες σεισμικών δεδομένων και να αυξηθεί η 

ακρίβεια της πρόβλεψης. 

 

Η ανάλυση ξεκινά με την παρουσίαση της σημασίας και των στόχων των μεθόδων τεχνητής 

νοημοσύνης (AI) για την πρόβλεψη σεισμών, ακολουθούμενη από μια στατιστική και οπτική 

παρουσίαση των χρησιμοποιούμενων συνόλων δεδομένων. Αυτό γίνεται για να εξηγηθούν οι 

μετρικές και τα μέτρα που λαμβάνονται υπόψη, καθώς και οι πιο σημαντικές τάσεις ή ακραίες 

τιμές που υπάρχουν στα συλλεχθέντα σεισμικά δεδομένα. Η έρευνα στοχεύει στην παροχή 

μιας επεξήγησης των θεωριών και τεχνικών που χρησιμοποιούνται για την αναγνώριση, την 

ανάλυση και την ταυτοποίηση των βασικών προτύπων των εισερχόμενων σεισμικών 

δεδομένων, καθώς και όλων των στοιχείων που καθιστούν ένα πρότυπο πιθανό προάγγελο ενός 

επικείμενου σεισμού. 

 

Η ροή εργασίας περιεγράφηκε λεπτομερώς όσον αφορά την προ επεξεργασία δεδομένων, την 

επιλογή μοντέλων και τις διαδικασίες που περιλαμβάνουν τη χρήση μη ισορροπημένων 

συνόλων δεδομένων. Δόθηκε ιδιαίτερη έμφαση στη μηχανική χαρακτηριστικών (feature 

engineering) και την επιλογή χαρακτηριστικών (feature selection) για την ανάπτυξη ενός πιο 

αποδοτικού μοντέλου. Χρησιμοποιήθηκαν οκτώ μοντέλα ML και DL, μεταξύ των οποίων 

δίκτυα Long Short-Term Memory (LSTM), Μονάδες Gated Recurrent (GRU) και Συνελικτικά 

Νευρωνικά Δίκτυα (CNN). Η βελτιστοποίηση των υπερπαραμέτρων πραγματοποιήθηκε μέσω 

grid search, με στόχο τη βελτίωση της ακρίβειας πρόβλεψης των μοντέλων. 

 

Για την αξιολόγηση της αποτελεσματικότητας των μεθόδων, εξετάστηκαν τα αποτελέσματα 

πριν και μετά τη βελτιστοποίηση, λαμβάνοντας υπόψη την ακρίβεια και άλλες μετρικές, καθώς 

και τη σταθερότητα των αποτελεσμάτων. Το άρθρο ολοκληρώνεται με ένα συμπέρασμα, στο 

οποίο παρουσιάζονται τα πιο σημαντικά αποτελέσματα, τα οφέλη που προσφέρουν οι μέθοδοι 

τεχνητής νοημοσύνης για την πρόβλεψη σεισμών, καθώς και τα βέλτιστα μοντέλα και οι 

παράμετροι που προέκυψαν από τα πειράματα. 
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Abstract 

The prediction of earthquakes stands as one of the most important, yet extremely difficult tasks 

to accomplish in the field of geophysics. The prediction of earthquakes has the ability to lessen 

risks and improve disaster management, assist during the time of catastrophe and mitigate risk. 

In this study machine learning (ML) and deep learning (DL) techniques are used to analyze 

time-series data in order to forecast seismic events. This research is proposed to develop 

methods in computing to detect indicators of seismic data in order to increase the prediction 

accuracy. 

 

This analysis begins with the importance and goals of AI methods towards earthquake 

prediction, followed by a statistical and visual presentation of the data sets utilized to explain 

the metrics and measures we are taking into consideration along with the most important trends 

or outliers that are present in the gathered seismic data. The research tries to provide an 

important explanation of the theories and techniques to recognize, explain and identify the 

basic data patterns of the incoming seismic data and all the elements that make the pattern a 

precursor of a possible Earthquake. 

 

The workflow was described in detail with regards to data preprocessing, model selection, and 

those processes which involve the usage of imbalanced datasets. More attention was given to 

feature engineering and feature selection for developing a better performing model. Eight ML 

and DL models were used which included Long Short-Term Memory networks (LSTM), Gated 

Recurrent Units (GRU), and Convolutional Neural Networks (CNN). Hyper parameter tuning 

was done through grid search with the goal of increasing the prediction accuracy in the models. 

 

To understand the effectiveness of the methods, both the pre-optimization and post-

optimization results were checked for accuracy and other metrics along with how robust the 

results are. The paper closes with a conclusion containing the most important results outlining 

the benefits that AI based methods offer to seismic predictions and the best models and 

parameters obtained from experiments. 
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Key Words 

 

Word Definition 

Earthquake 

Prediction 

The process of forecasting seismic events using scientific methods 

Seismic 

Activity 

The frequency, type, and size of earthquakes occurring in a specific region 

over time 

Machine 

Learning 

A subset of AI that enables systems to learn from data and make predictions 

without explicit programming 

Deep 

Learning 

A specialized field of ML using neural networks with multiple layers to 

model complex patterns in data 

Time Series 

Analysis 

The study of data points collected or recorded at successive time intervals to 

detect trends and patterns 

LSTM A type of recurrent neural network (RNN) designed to handle long-term 

dependencies in sequential data 

GRU A variant of RNN that uses gating mechanisms to efficiently capture 

dependencies in time series data 

CNN A deep learning architecture mainly used for image processing but also 

effective in analyzing spatial and sequential data 

RNN A neural network designed for processing sequential data by maintaining 

memory of previous inputs 

Feature 

Selection 

The process of selecting the most relevant variables in a dataset to improve 

model performance and efficiency 

SHAP An interpretability method that explains the impact of each feature on a 

model's predictions 

RFE A feature selection method that recursively removes less important features 

to improve model accuracy 

Receiver 

Transmitter 

A system that transmits and receives signals, often used in sensor networks 

for data collection 

Imbalanced 

Data 

A dataset where some classes are significantly underrepresented, leading to 

biased model predictions 

Feature 

Engineering 

The process of creating new input variables to improve ML model 

performance 

Anomaly The identification of unusual patterns or outliers in data that may indicate 
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Detection significant events 

Signal 

Processing 

Techniques for analyzing, modifying, and interpreting signals from sensors 

or time series data 

Time Series 

Forecasting 

The use of statistical or ML methods to predict future values based on past 

time-dependent data 

Disaster 

Preparedness 

Strategies and measures taken to mitigate the impact of natural disasters 

before they occur 

Risk 

Assessment 

The evaluation of potential risks associated with natural disasters and their 

impact 

Predictive 

Modeling 

The process of creating models to predict future events based on historical 

data 
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1. Introduction 

Earthquakes are one of the most powerful natural forces on the planet, capable of taking 

countless lives whilst causing grave destruction to economies and the environment. There have 

been various researches in the technology and the causation of earthquakes that have improved 

the monitoring and management of seismic activities, however, there is still room for 

improvement in predicting earthquakes reliably and successfully. 

Artificial intelligence as well as machine learning changed the model of prediction itself in 

numerous fields or areas, and the existence of big unorganized data has opened the opportunity 

to search for weak dependencies that are impossible for people to identify. To improve the way 

we predict earthquakes, deep learning, specifically time series analysis, became a suitable 

solution, as it was able to learn how to connect and cross reference correlations over time within 

the earthquake data. 

This thesis investigates the development of a machine/deep learning models for the estimation 

of the probability for a strong earthquake to occur based on 6 years (2014-2020) of very low 

frequency (VLF) subionospheric propagation data from 19 VLF receivers in Japan. The data 

was transmitted via the JJI VLF transmitter, which has a frequency of 22.2 kHz. The analysis 

included earthquakes (ML ≥ 4.5, depth ≤ 50 km) that occurred during the same time frame 

within the area of Japan together with the VLF data. 

The use of ionospheric anomalies for the prediction of earthquakes through the nighttime 

fluctuation method (NFM) and terminator time method (TTM) is still a controversial subject 

among the scientific community. So there is a strong need to evaluate the effectiveness and 

limitations of these approaches in order to contribute to the ongoing dialogue of creating a way 

to accurately predict high magnitude earthquake occurrences. [16] 
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2. Theory 

2.1. Introduction to Earthquakes 

Earthquakes are abrupt violent shakes of the ground that are usually caused by movements 

along faults or volcanic activities. They happen when tectonic plates move under great stress, 

releasing energy in the Earth’s crust which creates seismic waves. During the event, the energy 

that is released is measured by the Richter or moment magnitude scales and quantifies the 

energy released. Events of high magnitude can destroy human life, impact infrastructure, and 

heavily disrupt ecosystems. 

 

With the advances of modern technology, predicting earthquakes is still a huge challenge that 

many scientists face. One of the main reasons is the variety of factors that play a role during an 

earthquake, along with the lacking precursors. Because of this, earthquakes are still regarded 

as inaccurate natural processes that are caused by tectonic movements.  

 

In our efforts to accurately predict this natural process we are employing different methods and 

tools to create a system that can identify the precursors of an earthquake and provide warning 

to the areas affected. 

2.2. Terminator Time Method (TTM) 

The Terminator Time Method (TTM) is a Method that aims to examine the alterations 

experienced by the ionosphere during the inferior and superior transitions, commonly referred 

to as 'terminator times.' These periods are characterized by alterations of the ionospheric 

activities, due to the effects of the sun on the Earth's atmosphere, during these periods 

experiencing rapid changes. It is during these transitions that TTM are utilized to observe how 

earthquakes and other extreme phenomena do alter these periods of amplitude dips. Moderate 

to significant seismic activities may also induce minor shifts in the time of 

transitions/terminator times. Studying these shifts using TTM, we may have an opportunity to 

detect various upcoming seismic activities and hence contribute to research of how to 

accurately predict earthquakes. 

 

In simple terms: TTM uses the times of sunrises and sunsets to try and locate, and research, the 

unusual patterns in the Ionization layer region above the earth that might be linked to 

earthquakes. 

The Terminator Time Method (TTM) is designed for monitoring the timing of sunrise and 

sunset as it pertains to the minima found in the amplitude or phase of a signal.  

 

The sunrise and sunset signals exhibit terminator times (TTs) and include the following:  

● The amplitude SRT is also known as the sunrise terminator. 

● The amplitude SST is referred to as the sunset terminator.  
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The variances around SRT and SST are caused T by the interference of different propagating 

waves, such as the ground wave and the sky wave. Notably, significant shifts in the TTs from 

the adjacent or neighboring days’ TTs are considered as possible precursors to seismic activity. 

The TTM also exhibits flexibility in its approach. A sliding window of ±2 days (five days 

altogether) is used for calculating running means of time series 𝑡𝑚 and 𝑡𝑒 for the morning and 

evening terminators respectively. 

 

Finally, the running mean time series are subtracted from the respective TT time series to 

form the residual TT time series 𝑑𝑡𝑚 = 𝑡𝑚 − 〈𝑡𝑚〉   and  𝑑𝑡𝑒 = 𝑡𝑒 − 〈𝑡𝑒〉 

 

The VLF-daylength is calculated as 𝐷𝑉𝐿𝐹 = 𝑡𝑒 − 𝑡𝑚, as the time difference between evening 

and morning terminator times, and the running mean time series 𝐷𝑉𝐿𝐹  as 

𝑑𝐷𝑉𝐿𝐹 = 𝐷𝑉𝐿𝐹 − 〈𝐷𝑉𝐿𝐹〉. [18] (1) 

2.3. Nighttime Fluctuation Method (NFM) 

Nighttime Fluctuation Method (NFM) is an approach used to study geophysical and 

environmental parameters during the night, focusing on fluctuations in electric fields in the 

ionosphere, Ionospheric activity, and data from ground-based sensors. The above data is 

collected and analyzed in order to detect geophysical and seismic events. 

The basic assumption is that nighttime measurements of the ionospheric conditions are more 

stable compared to the day due to noise and human activity, thus making it easier to identify 

subtle anomalies that could indicate the possibility of an upcoming earthquake. This can be 

achieved by detecting alterations such as increase and decrease of ionospheric activity. The 

procedure involves processing raw nighttime amplitude data obtained from daily variation in 

the amplitude signal. It is necessary to select a specific night period to ensure enough data is 

collected while excluding daytime periods that are more susceptible to anthropogenic noise. 

For better analysis, terminator time represented by minimum amplitudes is excluded from the 

night interval. Ionosphere-influencing extreme events may change terminator times and these 

shifts are analyzed separately. Once the appropriate nighttime interval has been identified, 

mean value of amplitude data over ±15 days sliding window (with center at the day of interest) 

including the day of interest itself is calculated. This windowing technique minimizes long 

term variations, thus allowing focus on short-term fluctuations. 

 

The equation for residual variation in amplitude is as follows: 

 

𝑑𝐴(𝑡)=𝐴(𝑡)−〈𝐴(𝑡)〉, (2) 
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where 𝐴(𝑡) represents the amplitude at time 𝑡 and 〈𝐴(𝑡)〉 denotes mean amplitude over the 

sliding window.  

 

The daily values of three parameters are calculated as below: 

 

𝑇𝑅 =
∑ 𝑑𝐴(𝑡)

𝑁𝑒
𝑁𝑠

𝑁𝑒−𝑁𝑠
 , 

(3) 

 

where 𝑇𝑅 is the mean value of 𝑑𝐴(𝑡), and 𝑁𝑒 and 𝑁𝑠 are the selected nighttime start and end 

times respectively. [16] 

 

𝐷𝑃 = √
1

𝑁𝑒−𝑁𝑠
∑ (𝑑𝐴(𝑡) − 𝑇𝑅)2𝑁𝑒

𝑁𝑠
,  

 

(4) 

 

where 𝐷𝑃 is actually the standard deviation of 𝑑𝐴(𝑡). 

 

𝑁𝐹 = ∑(𝑑𝐴(𝑡))2

𝑁𝑒

𝑁𝑠

 

 

(5) 
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3. Data 

Receivers are positioned across various regions of Japan, with the map generated from precise 

coordinates in our dataset. 

 
Figure 1: Map of the wider area around Japan showing the 8 subionospheric  

propagation paths of the EAL VLF network. [16] 

 
Figure 2: Map of the wider area around Japan showing the 11 subionospheric  

propagation paths of the Hi-Sem VLF network [16] 

 

We used data in CSVs from these 19 receivers that include the transmitter's name along with 

each receiver's name and the range of the y-axis in dB. For example, we have 

"JJI_NSB_85_50." Furthermore, the selected nighttime interval is 20:30–02:30 LT, which is 

common for all sub-ionospheric paths and throughout the year. Additionally, parts of the 

nighttime data were excluded where the transmitter was "off" (i.e., the recording was noise) or 
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there was high noise. Other parts were excluded due to temporal overlap with geomagnetic 

storms (Dst < -50 nT and Kp > 5) and solar flares (C, M, and X classes).  

 

For the data processed with NFM (see figure 2), we have the three statistical normalized 

parameters: Trend, Dispersion, and NF The analysis was conducted based on the nighttime 

signal amplitude from the images. Nineteen csv files were used as input which were later 

combined to gather all the information. The NFM csv file structure is the following:  

● The 1st column is the date. 

● The 2nd column is the normalized Trend. 

● The 3rd column is the normalized Dispersion. 

● The 4th column is the normalized Nighttime fluctuation (NF). 

 

 
Figure 3: Data sample of the NFM data utilized 
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Figure 4: Record count pre receiver for NFM 

The time series plot shows significant fluctuations in Trend, Dispersion, and NF over time. No 

clear periodicity or seasonal patterns are evident by looking at the diagrams. 

 

 
Figure 5: Timeseries visualization of the different metrics for NFM 

 

The diagrams below suggest that Trend follows a roughly normal distribution, centered around 

zero. Dispersion and NF are skewed slightly to the left, indicating that most NF values are 

small, but occasionally high values exist in both dispersion and NF. The distributions appear 
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dense around their mean values, indicating that the majority of the data lies within a standard 

range. 

 
Figure 6: Distribution for the different metrics for NFM 

The Boxplot diagrams in Figure 7 indicate that several outliers are present, especially in 

Dispersion and NF, suggesting certain filenames may have unusual or extreme records. The 

median values across filenames are relatively stable, indicating no drastic shifts in overall 

central tendency. 

 

 
Figure 7: Boxplots for the different NFM Metrics per receiver,  

the dots outside the boxplots represent outliers per receiver 
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Additionally we used data on the seasonal variation of terminator times and daylength. The 

data was provided in 3 csv files per receiver, one for the morning, one for the evening and one 

for the daylength values. A total of 54 csv items were combined to gather all the information 

using as keys the Date and the Filename 

. 

The combined data contained the following information: 

● The 1st column is the Date in Local Time. 

● The 2nd column is "morning TT" (Morning Terminator Time). 

● The 3rd column is "evening TT" (Evening Terminator Time). 

● The 4th column is "daylength". 

 

 
Figure 8: Seasonal variation Data Sample 

 

 

 
Figure 9: Record count pre receiver for daylength 

The diagrams below suggest that the distribution of Value_day is right-skewed (positively 

skewed), meaning that lower values are less frequent, while higher values occur more often. 
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The distribution of Value_ev is slightly right-skewed, but it is more symmetric compared to 

Value_day. Value_mo is also right-skewed with a longer tail on the right, meaning some values 

are much higher but occur infrequently. 

 

 
Figure 10: Distribution for the different metrics for Daylength 

The Boxplot diagrams in Figure 11 indicate Variability across receivers. There are outliers 

present, especially in Value_day, which may indicate anomalies or fluctuations in the dataset. 

The Value_ev presents a relatively more stable distribution which suggests it is more consistent 

compared to the other two variables. 

 

 
Figure 11: Boxplots for the different Daylength Metrics per receiver 

Segments have been discarded from the data as there was abnormal winter dispersion, outliers, 

and temporal overlap with geomagnetic storms and solar flares. Furthermore, another category 

labeled ‘corrupted data’ includes data in which no terminator times (TTs) could be defined 

because of the absence of signal, noise, or the signal’s form.[16] 

 

For the case of earthquakes, data have been obtained from JMA national catalog filtering for 

earthquakes with Magnitude metric greater than 4.5 and focal depth less or equal to 50 

kilometers. Following that, filtering of the sub-ionospheric paths was done separately for each 

path considering only the earthquakes located within the 5th zone of Fresnel diffraction. 

Moreover, the critical radius of the Fresnel zone intersection with the seismic zone also needed 

to be taken into account. The 5th Fresnel zone is a region of wave propagation that contains 

the impact of additional diffraction on the signal caused by seismic activity. It is one of the 
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higher order Fresnel zones and for this reason, it is expected interference of waves within the 

zone can produce measurable disturbance of the ionosphere.[19] 

 

The Earthquake data was provided in nineteen csv files which were combined, containing the 

following information: 

● The 1st column is the date and time in local time. 

● The 2nd column is the Earthquake Magnitude. 

● The 3rd column is the Longitude. 

● The 4th column is Latitude. 

● The 5th column is the focal Depth of the earthquake. 

 

 
Figure 12: Earthquake Data Sample. 

 

 

 
Figure 13: Record count pre receiver for Εearthquake data 
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4. Strategic Approaches for Data Preparation and Model 

Optimization 

The most important goal of our project was to identify the best combination of techniques 

which allow us to create a system that can predict the occurrence of seismic events with a good 

deal of accuracy. Given the importance of the goal, we tried to calibrate before and during data 

modeling and even employed less sensitive techniques, in order to increase the chances of 

identifying any relationships that would suggest an earthquake is likely to happen. 

 

In order to accomplish our objective and build competent models, we utilized certain strategies: 

● Data Analysis & Data Cleansing: Validates data accuracy and integrity by eliminating 

noise, outliers, and missing values, thus making it appropriate for analysis.  

● Data Balancing: Prevention of biased predictions through the use of Balancing 

techniques to ensure that all classes in the dataset (earthquakes and non-earthquakes) 

are adequately represented.  

● Feature Selection: This step details the relevant features (or variables) needed in 

relation to an Earthquake prediction, which raises the accuracy of the model while 

improving interpretability because of noise reduction and dimensionality constriction. 

● Modeling & Hyperparameter Tuning: It also includes the selection of appropriate 

machine learning models like LSTM, GRU, CNN, LSTM, etc. and the tuning of 

hyperparameters to achieve maximum accuracy and optimize performance of the model 

in regard to the data provided. 
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4.1 Data analysis - Data cleaning  

A combination of the existing datasets with the aim 

of having one dataset that contains all the 

information of the other datasets, allows for 

improving the understanding of the information 

offered. This enables one to properly analyze the 

data, find missing values, or outlier data – For these 

reasons and to achieve a better understanding of the 

information captured by each receiver, we first 

created a single consolidated dataset. For this 

purpose, all the datasets were combined using the 

dates and the receivers for each specific dataset as 

the keys.  

 

When available, latitude and longitude values were 

adjusted to coordinates. Additionally, recognizing 

the potential importance of distinguishing that each 

data point comes from a certain receiver, each 

receiver was given flag columns. All the 

information was then captured in a single final data 

frame where the following was the output. 

 

The columns Time, Magnitude, Latitude, Longitude, and Depth are only populated during a 

reported/recorded earthquake. Because of this, these columns were omitted from the dataset 

and were changed to an earthquake flag as their model features selection would introduce a 

bias into the model. 

 

  

Figure 14: Commulative data overview 
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4.2. Balancing techniques 

From the graphs below it is evident that our data is imbalanced as the number of negative 

events is much larger than the number of positive events, in specific only 9.6% of our data 

are positive earthquake events

 
Figure 15: Chart of values daylight in relation to positive earthquake positive events. 

 

In the context of machine learning, an imbalanced dataset is when the instances of a class 

exceed that of another class by a large margin. As an illustration, consider seismic events as 

the primary class and non-seismic events as the secondary class. In earthquake prediction, the 

former class occurs far less often, thus resulting in a skewed model training which will produce 

biased predictions and poor performance metrics for the minority class.  

 

An Imbalanced Dataset causes Challenges in modeling, as mentioned above. In our case we 

are trying to predict the minority class (positive earthquake occurrences) and to avoid having 

biased predictions and poor performance metrics we had to manipulate the data to produce a 

more consistent and robust training dataset.  

 

The challenges we faced due to the Imbalanced Dataset are 

● Model Bias: Majority Class is Preferred: With the majority of classes in a dataset, 

machine learning models seek to minimize overall error distribution often resulting in 

prioritized class predictions more frequently. The result is often a lower recall and 

precision measure which is the opposite of what the analysis aims to achieve.  

● Misleading Metrics: Performance accuracy and other standard metrics can be 

extremely misleading. For example, in our dataset with a ratio of 91:9, a model who 

predicts the only majority class achieved 98% accuracy but could not fulfill the needs 

of the minority class. 
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● Overfitting to Majority Class: One of the other implications of such imbalanced 

datasets is that models may overfit the majority class resulting in a failure to generalize 

on class instances of the minority.  

● Real World Impact: In high stake situations such as the prediction of earthquakes, 

erroneously classifying a minority class event and failing to detect it could lead to 

catastrophic outcomes. 

 

There are multiple strategies that have been created to alleviate the problems caused by 

imbalanced datasets. These mentioned strategies include: 

● Resampling Techniques: 

○ Over-Sampling: Creating new synthetic examples for the less represented class. 

○ Under-Sampling: Selecting a smaller number of observations from the 

overrepresented class. 

● Combination Methods: Blending both over-sampling and under-sampling methods. 

● Algorithmic Adjustments: Applying cost-sensitive learning by increasing penalties 

for the mistakes made in the training set for the minority class. 

● Hybrid Approaches: Integrating data and algorithm methods to achieve better 

performance with biased datasets. 

 

For earthquake prediction, a dataset representing the occurrence of seismic events is usually 

heavily imbalanced which makes it one of the most difficult tasks due to the scarcity of the 

disasters.  

 

This imbalance can be dealt with very effectively by deploying machine learning: 

● Better recall and precision for earthquakes determined in the datasets. 

● Less false negatives when a particular marker is missed that indicates a pinnacle to an 

earthquake. 

● Better trustworthiness of models when applied to the ground reality builds this in a 

large-scale manner. 

 

In our case we decided to test two different methods of handling the imbalanced dataset and 

compare results to identify the methods that produce a better outcome for our data. In particular 

we tested INOS (Interpolation-Based Oversampling) and ESPO (Edge-Based Synthetic 

Minority Oversampling).[1] 

4.2.1. INOS (Interpolation-Based Oversampling) 

Informative Over-Sampling, or InOS, focuses on the improvement of the predictive 

performance of a model through the augmentation of the minority class in class imbalanced 

datasets. InOS differs from conventional methods in that it seeks to produce domain driving 

informative time-series samples, ensuring an allocation of the original data distribution. This 

method is quite useful in the prediction of extreme but rare events like earthquakes.  
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The steps we implemented to perform INOS are the following: 

● Identification of the Minority Class: Analysis of the dataset to determine the minority 

event classes such as seismic events.  

● Evaluation and determination of the level of unbalance within the dataset using the 

imbalance ratio.  

● Feature Space Analysis: Analysis of the features in the majority class and features of 

the class with fewer samples,  

● Clustering: Identification of feature space regions with a high density of class samples.   

● Generation of Synthetic Samples: Generation of New samples by using a mixture of 

features from the few samples in that cluster to increase the sample size of that class.  

 

InOS creates synthetic examples that are realistic and informative as they are created by sample 

points in the neighborhoods without disturbing the original data structure. Using informatic or 

statistical techniques to guide the creation of the synthetic examples to be representative of the 

patterns seen in the underrepresented class, we were able to prevent the creation of unnecessary 

or irrelevant samples which could potentially lower the performance of the model’s predictions 

such as precision and recall. After the addition of the synthetic samples into the original data 

set, the class distribution is much more even. 

 

In our case, after implementing INOS, our dataset gained the following characteristics: 

● It created realistic simulated samples of what one could expect before the shock occurs, 

keeping intact the statistical characteristics of the minority group.  

● It controlled the exposure of the models to samples that create noise and very simplistic 

samples reducing the risk of over-fitting. 

● It increased the model’s sensitivity to important events that are infrequent, improving 

the recall and diminishing the false negatives. 

 

 
Figure 16: Pre vs Post INOS Positive EQ events ratio. 
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Figure 17:Per vs Post INOS Optimization WEQ Positive events 

4.2.2. ESPO (Edge-Based Synthetic Minority Oversampling) 

ESPO refers to Edge-Based Synthetic Minority Oversampling, which is a technique of data 

augmentation used to address the problems of class imbalance by creating synthetic samples 

along the boundaries of the minority class distribution. ESPO's initial step is to increase the 

class boundary of the decision-making boundary or border. This is unlike traditional methods 

such as SMOTE, which “dissolve” all instances of minority class to create new samples. This 

addresses the underrepresentation issue. Because ESPO aims to improve the classification 

accuracy, it works best in datasets in which the boundaries of the minority class are sparse and 

achieving precision in classification is crucial.  

 

In our case we performed the following steps to handle the dataset Imbalance using ESPO: 

● Identification of Minority Class and Edges: Examined the data and focused on the 

edges of the minority class while also figuring out the class imbalance ratio. 

● Utilization of k-nearest neighbors (k-NN) to identify the instances that are located 

closer to the boundary of the minority class.  

● Selected Pairs for Interpolation: Identified and paired together instances that are 

considered edge instances for interpolation. 

● Choose pairs that are located closer to the decision boundary and regions with lower 

concentration of minority class instances. 
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● Created Artificial Samples: Interpolation of new instances between the given edge 

instances to ensure that the produced instances are close to the edge while still being in 

the realistic distribution boundaries of the minority class.  

● Refined Artificial Samples: The synthetic samples needed to be verified using some 

domain knowledge or constraints, such as their relevance towards the actual problem 

within context (seismic precursors to earthquake forecasting).  

● Augmented the Dataset: Included the artificial samples to the minority class. This 

resulted in a more balanced dataset.  

● Model Training and Evaluation: Trained the model with the augmented dataset 

focusing on recall, F1-score and AUC-ROC metrics for the minority class 

improvements. 

 

Why we use ESPO on Earthquake Prediction: When ESPO is applied to the areas of 

earthquake prediction, prediction accuracy is much higher for the following reasons: 

● Focuses on edge instances, which best helps delineate the border between seismic and 

non-seismic phenomena, which is critical in event characterization.  

● Produces synthetic samples which enhance model sensitivity in these regions, 

therefore increasing recall and reducing false negatives. 

● Helps achieve the preservation of the minority class distribution, ensuring that the 

produced synthetic data is credible and useful. 

 
Figure 18: Pre vs Post ESPO Optimization Positive EQ ratio 

4.2.3. Combination of INOS and ESPO 

In concert with the best features of INOS and ESPO, we adopted a hybrid method that joins 

their strengths together. INOS produces highly believable and statistical driven synthetic 

samples by interpolating dense regions of the minority class feature space, whereas ESPO 

performs better on boundaries to increase accuracy and reduce false negatives. These methods 
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together gave us a dataset that has domain-representative samples balanced with edge focused 

enhancements. This combination improved recall, F1 score, and model bias in a more positive 

direction leading to a robust prediction framework for earthquakes. 

 
Figure 19: Pre vs Post ESPO Optimization Positive EQ events 

The combination of the two methods further increased the Minority Sample percentage thus 

creating a more robust dataset.  

 
Figure 20: Pre vs Post Optimization Positive EQ ratio of the combination of INOS and ESPO 
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4.3. Feature selection 

Before training our models into the earthquake data, we implemented different methods to 

identify the features that were most relevant in order to reduce complexity, minimize 

overfitting, and enhance interpretability. Owing to the dataset complexity and scale, a 

systematic feature selection approach was necessary, allowing isolating the most relevant 

variables for seismic events prediction. In this chapter, we present the methods of feature 

selection applied, SHAP and Recursive Feature Elimination (RFE) in particular. With these, 

we have been able to assess separately the contribution of every feature and arrange the models 

in accordance with the most significant predictors. These tests proved beneficial not only in 

reducing the model training time but also in exposing what was truly driving the predictions 

made by the models and contributed to building models that were reliable and free from bias. 

4.3.1. SHAP (SHapley Additive exPlanations) values 

 

SHAP (SHapley Additive exPlanations) is a certain output from a machine learning mode. It 

provides an inclusive approach to the use of cooperative game theory, which involves the use 

of Shapley values, to complement a specific prediction by assigning an importance to each 

feature involved. These weights serve as a measure of a feature’s impact and thus serve the 

purpose of making complex models easier to understand 

 

SHAP values are calculated based on all possible combinations of features in the model and 

measuring the additional value that outstanding features bring to the prediction of the model:  

● Model Agnostic: SHAP can be used in any kind of machine learning model, be it a 

linear regression to a nonlinear XGBoost and even random forest which is considered 

to be complex.  

● Additivity: For each feature in the instance, it is measured that the total SHAP values 

add up to the output of the model minus the average prediction (baseline). 

● Fairness: Feature contributions are made in an equitable manner using basic alliances 

mechanisms in game theory. 

 

The key concepts of the SHAP are shown below: 

● Shapley Values: These were originally derived from cooperative game theory where 

all the features that helped make a prediction having a go before the “pay” is made to 

every single one of them equally.  

● Baseline Prediction: This estimates what the model will predict, when there are no 

input features available, which is an average of the output to be trained. 

● Feature Contribution: Shapley Heuristic additively approximates the contributions of 

entire features to or from the baseline prediction. 

 

In our case we applied SHAP in Feature Selection with the below steps: 
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● Feature Importance Ranking: Ranked by their SHAP values, features were ordered 

according to their impact in the models’ predictions. To reduce the complexity in the 

model, features with low average SHAP values were ignored. 

● Visualizing Feature Impact: Features were evaluated according to their degree of 

importance and interaction by showing the distribution of shap values across the dataset 

for every feature. So, we were able to pinpoint features that are significantly relevant 

to the prediction by tracking how the shap values vary in relation to various features 

being combined. 

 

Pros of SHAP in earthquake prediction:  

● Works for any Model: Is useful for any kind of prediction model.  

● Global and Local Interpretability: Gives insight into an individual prediction(local) 

and also gives an insight into how the model performs overall(global).  

● Fairness: Explains mathematically a fair mechanism to approve the feature 

contributions. 

 

Cons of SHAP in earthquake prediction: 

● Costly: Deriving exact SHAP values tends to be time-consuming and an expensive 

exercise mostly with complex models and large data sets. 

● Underpinning Approximations: There are simpler approaches such as TreeSHAP or 

KernelSHAP that perform the calculation, but only approximate the Shapley values 

with Shapley values, which entails some loss of accuracy.[15] 

4.3.2. Recursive Feature Elimination (RFE) 

Recursive Feature Elimination (RFE) is a feature selection method that aims to determine the 

best predictors for a particular machine learning model. RFE performs this by taking a model 

and removing the features that are the least useful, and then re-training the model on the 

remaining features. This process is repeated until a certain number of features have been 

chosen, or other performance-related criteria have been met. 

 

RFE adopts a particularly structured approach to feature ranking and elimination of those 

features that do the least towards enhancing the performance of the model in the following 

steps: 

1. Train model: The machine learning model (linear regression, Random Forest, SVM, 

etc.) is trained on the dataset with all features. 

2. Ranking Features: During this training session, the model sets scores to the features 

relative to their importance (linear models contain coefficients; tree-based models 

incorporate feature importance scores). 

3. Removing Features: The model is retrained after excluding the least important 

feature(s) of the model. 

4. Repeat: Perform Step 2 and Step 3 until optimal features are reached or the model starts 

to decrease in performance. 
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The application of RFE in our dataset produced the following results: 

● RFE shrunk the predictor space by targeting only the most important features that 

needed to be used. This reduced overfitting and could save the costs involved in 

computations, in particular on high-dimensional data. 

● Feature Ranking: RFE develops a ranked list of features that were used pertaining to 

the model’s performance. The prediction tasks that have the highest rank were given 

the topmost gears. 

● Model Optimization: RFE took care of the elimination of irrelevant or redundant 

features which helped in the interpretation of the model and also improved the accuracy 

considerably. 

 

Advantages of RFE: 

● Model-Specific Feature Importance: RFE analyzes the model at hand and uses 

suitable features to that model so that it does not make any mistakes on that model. 

● Scalability: RFE is an approach that can be used in different arbitrary types of machine 

learning models. 

● Improved Performance: RFE is useful in removing the noise or the undesirable 

features making the generalization of the model relatively better as well as reducing 

overfitting. 

 

Limitations of RFE:  

● Computational Cost: RFE has the disadvantage of retraining the model many times, 

thus this takes a long time for big datasets and heavily parameterized models. 

● Dependency on Initial Model: The RFE scales to how good the model specified in the 

rank ordering of the feature was. For example, tree-based models may rank the features 

differently than some linear models. 

● Risk of Over-Elimination: Over-Removing features can risk cutting out relevant 

features that have a minimum contribution to the prediction.[11] 
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5. Modeling 

This chapter describes the machine learning models which were trained and tested with a view 

to predicting earthquakes. In carrying out this work, both deep learning structures as well as 

traditional machine learning structures were developed and compared. The chosen models are 

sufficiently different from one another and are each tailored to give optimal results with time 

series data, inter-feature relations, and predicting times. 

 

Deep learning models include Long Short Term Memory (LSTM), Gated Recurrent Unit 

(GRU), Convolutional Neural Networks (CNNs), and Recurrent Neural Networks (RNNs). 

These architectures were selected because of their successful dependability to model temporal 

relationships and derive intricate structures from ordered data which is essential in earthquake 

prediction. 

 

Also, the deep learning models, traditional machine learning algorithms such as Random 

Forest, K-Nearest Neighbors (KNN), XGBoost, and Gaussian Process were trained and tested. 

These models offer different strategies that do not demand High Performance Computing and 

large amounts of data but are still reasonably good. 

 

Every model is discussed in the next sections, including their architectural design and 

significant features and the rationale behind their selection. This comparison and assessment 

clearly bring out the strengths and weaknesses of all the models providing great insight into 

their use in earthquake prediction. 

5.1. Long Short-Term Memory (LSTM) 

How LSTMs Work: Long Short-Term Memory (LSTM) networks are a type of recurrent 

neural network (RNN) designed to handle sequential information by capturing long-term 

dependencies. Traditional RNNs often suffer from the vanishing gradient problem making it 

difficult for them to learn relationships over extended sequences. LSTMs solve this by 

incorporating memory cells and gating mechanisms that enable selective storing or 

forgetting.[13] 

 

Crucial parts of an LSTM model include: 

● Forget Gate: Decides which portions of prior information should be thrown away so 

as to ensure the model concentrates on relevant facts. 

● Input Gate: Determines what new data should be saved in the memory thus allowing 

the model to effectively assimilate recent observations. 
● Output Gate: Controls how much of the memory is used in generating output or passed 

to the next step thereby providing contextually informed predictions made by the 

model.[9] 
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Thus, these features make LSTMs capable of capturing both short and long term dependencies 

hence they are suitable for time series data such as seismic or atmospheric signals. 

 

This study uses LSTMs to forecast earthquake incidences through the analysis of sequential 

data. The input data is a series of historical time steps which assist the model in identifying 

relationships with seismic events.[10] 

 

Input Data: Sequences like ionospheric anomalies are sent into an LSTM model. 

Training Process: LSTM learns temporal dependencies by iterating through multiple time 

steps, capturing patterns that may indicate precursors to Earthquakes.[9] 

Prediction: Given new data, the trained LSTM looks back on its previous observations and 

can tell whether there is a possibility of earthquake or not.[13] 

5.2. Gated Recurrent Unit (GRU) 

Gated Recurrent Units (GRUs) are a variant of recurrent neural networks (RNNs), which were 

simplified in order to fix the issues with previous RNN models, such as vanishing gradient 

problem, while also providing more straightforward design compared to Long Short-Term 

Memory (LSTM) networks. By reducing the number of gates and parameters, GRUs have 

shown that they can be efficient without compromising on their ability to capture long-term 

dependencies. 

 

There are two parts in the GRU architecture: 

● Update Gate: This determines how much of past information should be preserved in 

the present hidden state. It balances the relevance of past and actual inputs. 

● Reset Gate: When calculating the new candidate hidden state, it decides how much of 

the previous information to erase out. This upholds flexibility for recent changes in 

input sequences. 

 

Unlike LSTMs, GRUs do not employ an additional memory cell thus simplifying them whilst 

still allowing them to model both short and long term dependencies.[5] 

 

Within this study, the GRUs are applied to analyze and predict earthquakes by modeling their 

ability to simulate temporal patterns in this kind of data. Since they are efficient and simple, 

GRUs can handle huge datasets or applications that require faster training. 

 

Data Input: The GRU model takes sequential data such as seismic signals or ionospheric 

anomalies for analysis. 

 

Training: The GRU identifies patterns among input sequences associated with seismic 

activities, hence improving its ability to make predictions.[4] 
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5.3. Convolutional Neural Network (CNN) 

CNNs, Convolutional Neural Networks, are a type of deep learning model constructed to 

handle structured data such as grid-like data or images. Its abilities in the recognition of spatial 

and temporal patterns make it highly effective for feature extraction when dealing with tasks 

like image classification and time series.[17] 

 

The major components constituting CNNs are as follows: 

● Convolutional Layers: These are layers with filters (kernels) that slide over input data 

and identify local patterns. The key features of the input like edges in images or 

temporal patterns in signals can be highlighted by these filters creating feature maps. 

● Pooling Layers: Retaining important information while reducing computational 

complexity is what pooling layers do to spatial dimensions of feature maps. In this step, 

small variations of the input should not affect results significantly (Bengio et al., 2013). 

● Fully Connected Layers: Fully connected layers map extracted features during feature 

extraction to output predictions whether classification or regression. 

 

In this study, we apply CNNs for earthquake prediction on spatial or temporal grids structured 

data. Hierarchical structure of CNNs helps them to interpret meaningful patterns within the 

input data e.g. changes in atmospheric signals. We have data which is structured as grids or 

sequences to represent spatiotemporal nature of observed phenomena. 

 

Feature Extraction: The convolutional layers detect patterns such as discontinuities or 

relationships that may indicate seismic activity. 

 

Prediction: The fully connected layers will use the extracted features to predict the chance, 

place, and size of earthquakes. 

5.4. Recurrent Neural Network (RNN) 

Recurrent Neural Networks (RNNs) are a type of neural network designed for sequential data 

processing. Unlike ordinary feed-forward networks, they contain feedback loops that 

remember past inputs and thus can represent temporal dependencies and patterns. 

 

At each time step, present input is taken along with the prior hidden state by the RNN. As far 

as remembrance of what went before is concerned, this concealed status serves as the memory 

of the network. The net’s output at every time step will be influenced by both current 

information and all previously accumulated memories. Although recurrent neural networks 

learn well during short term relations, they usually fail to capture long-term dependencies due 

to problems such as vanishing gradients.[2] 
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This research will employ RNNs in earthquake prediction given its sequential nature. They are 

useful in analyzing seismic signals or atmospheric anomalies because they have a capacity for 

capturing temporal links. 

● Input Data: This is when data flows continuously into an RNN like ionospheric 

variations or seismic signal measurements over time. 

● Training Process: The RNN learns to connect definite templates in the sequence with 

seismic activity, using feedback loops to include interconnections across many time 

steps. 

● Prediction: After training, the RNN ascertains chances of an earthquake happening 

from new input sequences by taking advantage of its remembrance of previous data.[8] 

5.5. Random Forest 

Random Forest is a machine learning technique that combines many decision trees to improve 

predictive precision and robustness. It is done by constructing a bunch (forest) of decision trees 

during training and collecting their predictions (through majority voting for classification or 

averaging for regression) into one final result. Random Forest relies on two elements: 

bootstrapping and random feature selection: 

 

Bootstrapping (Bagging): Every single decision tree is constructed based on a randomly 

chosen fraction of the training data with replacements. This ensures different trees resulting in 

reduced overfitting. 

 

Random Feature Selection: While making each split in a decision tree only some features are 

considered instead of considering all features. Thus, reducing correlation among trees thereby 

boosting generalization. 

 

Random forest averages predictions from numerous trees so as to minimize errors arising 

from overfitting to specific samples or variables.[3] 

5.6. K-Nearest Neighbors 

K-Nearest Neighbors (k-NN) is a simple, but effective algorithm in classification and 

regression. Hence, it uses the principle of instance-based learning, which makes predictions for 

new data points with respect to their likeness with already existing data points in the training 

set. The algorithm does not need any form of training; instead, it just relies on memory.[6] 

 

Essential Steps in k-NN: 

● Distance Calculation: This includes finding the distance between a new data point and 

all the points present in the training dataset.  

● Finding neighbors: By use of k closest data points that are associated with a novel 

instance are taken as its neighbours. 
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● Prediction: Among the k nearest neighbours, prediction is that whose class is majority 

one. 

5.7. XGBoost 

XGBoost (Extreme Gradient Boosting) is a very sophisticated ensemble machine learning 

model applicable for both classification and regression tasks. It is based on the paradigm of 

gradient boosting where models are built in an auto-regressive manner whereby each new 

model is built with the intention of correcting the mistakes of the last one. XGBoost makes 

advancements like regularization, parallel processing, and tree building optimization which 

enables its users to build much quicker and accurate solutions as compared to just gradient 

boosting. 

 

In XGBoost the main steps include: 

● Model Initialization: Algorithm computes base learner such as predictions for 

regression could be the mean or for classification the most common category. 

● Gradient Calculation: In every iteration, the model computes the gradient of the loss 

function for each training example as a measure of how the model is currently 

predicting compared to the actual value. 

● Tree Construction: A decision tree is constructed in order to limit the value of the loss 

function where the calculated gradients act as weights for the splits. 

● Model Update: The predictions from the new tree are appended to the previous 

ensemble and hence the quality of the overall prediction is enhanced. 

● Regularization: XGBoost implements L1 and L2 regularization during the model 

training stage to limit the model complexity and hence eliminate overfitting. 

5.8. Gaussian Process 

Gaussian Processes constitute a class of probabilistic non-parametric models which can be used 

for regression and classification tasks. Instead of a direct output prediction, GP’s model a 

distribution of functions that can explain the data, making it a useful and uncertainty-informed 

approach (Rasmussen & Williams, 2006). 

 

Key Concepts of Gaussian Processes:  

 

● Prior Distribution: There is a belief that GP models function values which are 

multivariate Gaussian variables. Said belief is formed after observing the data and this 

function is an estimated mean function with zero and a kernel type function. 

● Kernel (Covariance) Function: Data points that are in closer proximity are weighted 

more heavily than outlying data points, which is determined by the kernel function. 

Well known kernels are the radial basis function (RBF) and Matérn kernel. 

● Posterior Distribution: A posterior distribution is therefore defined as the distribution 

which is obtained through multiplication of the prior distributions with a given 
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likelihood of the data function and a model. This posterior serves to refine the earlier 

guesses which were made regarding the underlying function that generated the data. 

6. Model Optimization Methods 

In order to achieve the optimal modeling results we tried to improve model accuracy by 

utilizing optimization methods and techniques. This chapter covers different methods of model 

optimization with an emphasis on hyperparameter adjustment and search strategies. 

Hyperparameter adjustment is one of the most important parts in adjusting a model’s accuracy 

level, preventing it from overfitting or underfitting, and saving on computation power. Among 

the numerous methods, grid search is presented as the most organized technique for 

determining the best combination of hyperparameters by systematically examining all preset 

configurations in order to enhance accuracy and reliability. In undertaking these approaches, 

we hope to optimize the models for broader application and use in tremor forecasting. 

6.1. Hyperparameter tuning 

Hyperparameter tuning refers to the procedure of selecting the best values of a model’s 

hyperparameters for a task. In contrast to model parameters such as weights in a neural network 

learned through training, hyperparameters that define the learning are set. These include the 

learning rates, layers or units in neural networks, the depth of decision trees, or the number of 

estimators in the case of ensemble methods.[2] 

 

Hyperparameters significantly affect the performance of the model and its ability to generalize. 

It goes without saying that hyperparameters must be well optimized for performance to 

improve. [7] 

 

Good hyperparameters can for example. 

● Improve Accuracy: So long as a suitable hyperparameter is constantly utilized, it 

results in better performance in most predictions anyways. 

● Prevent Overfitting or Underfitting: If, entirely for example, the regularization 

parameter is exceedingly high, it could easily lead to under fitting, conversely if it is 

lower the former becomes overfitting. 

● Optimize Computational Resources: Hyperparameters like batch size, or the number 

of estimators when properly suited can be said to help decrease time and memory 

consumption during training. 

● Ensure Robustness: To be applicable in real life models that have been fitted needs to 

be able to provide performance when data that it has never been exposed to is provided. 
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6.2. Grid Search 

Grid search is a type of methodical search used for hyperparameter optimization to such a depth 

of which each parameter within a specific set would be scanned. The thorough optimization 

would initiate for a desired model till all combinations have been checked.[14] 

  

Each combination is tested with performance measures: 

● Systematic Exploration: The Grid search guarantees the usage of every combination 

within the set parameters during the model building phase thus ensuring no 

combinations are missed or ignored. 

● Optimizing Model Performance: Since multiple combinations will be checked 

through the Grid Search process the best combination of the hyper parameters to 

increase the performance would be sought. 

● Reproducibility: Considering the systematic and extensive nature of the grid search 

tuning process, replication of the process for the purposes of research and operational 

usage is effortless. 

● Hidden Size: The number of neurons in the hidden layers of a neural network, 

determining its capacity to learn complex patterns. 

● Batch Size: The number of training samples processed together in a single forward and 

backward pass. 

● Epochs: The number of complete passes through the entire training dataset during 

training. 

● Learning Rate: The step size that controls how much the model’s weights are updated 

during training.[13] 
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In our case, we tested every hyperparameter combination by training the models multiple times 

in order to find the best performing combination for each model. 
 

Table 1: Grid Search parameters 

Model Tuned Hyperparameters Best performing Configuration 

LSTM 

Hidden Size: [64, 128, 256]  

Learning Rate: [0.01, 0.001, 0.0001]  

Batch Size: [16, 32, 64]  

Dropout Rate: [0.1, 0.2, 0.5]  

Layers: [1, 2, 3] 

Hidden Size: 128  

Learning Rate: 0.001  

Batch Size: 32  

Dropout Rate: 0.2  

Layers: 2 

GRU 

Hidden Size: [64, 128, 256]  

Learning Rate: [0.01, 0.001, 0.0001]  

Batch Size: [16, 32, 64]  

Dropout Rate: [0.1, 0.2, 0.5]  

Layers: [1, 2, 3] 

Hidden Size: 128  

Learning Rate: 0.001  

Batch Size: 32  

Dropout Rate: 0.2  

Layers: 2 

CNN 

Filter Size: [32, 64, 128]  

Kernel Size: [3x3, 5x5]  

Learning Rate: [0.01, 0.001]  

Pooling Type: [max, average] 

Filter Size: 64  

Kernel Size: 3x3  

Learning Rate: 0.001  

Pooling Type: max 

RNN 

Hidden Size: [64, 128, 256]  

Learning Rate: [0.01, 0.001, 0.0001]  

Batch Size: [16, 32, 64]  

Dropout Rate: [0.1, 0.2, 0.5]  

Layers: [1, 2, 3] 

Hidden Size: 128  

Learning Rate: 0.001  

Batch Size: 32  

Dropout Rate: 0.2  

Layers: 2 

Random 

Forest 

Number of Trees: [50, 100, 200]  

Max Depth: [5, 10, 20]  

Min Samples Split: [2, 5, 10] 

Number of Trees: 100  

Max Depth: 10 Min  

Samples Split: 5 

K-Nearest 

Neighbors 

Number of Neighbors (k): [3, 5, 7, 9]  

Distance Metric: [Euclidean, Manhattan]  

Weights: [Uniform, Distance-based] 

Number of Neighbors: 5  

Distance Metric: Euclidean Weights: 

Distance-based 

XGBoost 

Learning Rate: [0.1, 0.01, 0.001]  

Max Depth: [3, 6, 9]  

Subsample Ratio: [0.8, 1.0]  

Number of Estimators: [50, 100, 150] 

Learning Rate: 0.01  

Max Depth: 6  

Subsample Ratio: 0.8  

Number of Estimators: 100 

Gaussian 

Process 

Kernel Type: [RBF, Matern, Rational 

Quadratic] Noise Level: [1e-3, 1e-2, 1e-1]  

Length Scale: [0.1, 1.0, 10.0] 

Kernel Type: RBF  

Noise Level: 1e-2  

Length Scale: 1.0 
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7. Results 

This chapter describes the performance of our machine learning models in predicting seismic 

activities, including the results obtained from optimization. Several elements of model 

performance, including accuracy, recall, precision, false positive rate (FPR), G-means, F1 

score, Matthews correlation coefficient (MCC), and area under the curve (AUC) were assessed 

for the performance of each model.  

 

We start off with the pre-optimization results which serve as the primary evaluation of model 

performance, against which the results achieved after applying the refinement techniques are 

compared. Lastly, we turn to the post optimization results to validate the effects of 

hyperparameter tuning and grid search strategies on overall model accuracy and reliability.  

7.1. Pre-Optimization Results 

Upon applying the Machine Learning Models covered in the previous chapters we collected 

various performance metrics to provide a comparative overview. In this section, the results 

obtained before an optimization process is applied are described with a focus on the numerous 

performance measures achieved which include accuracy, recall, precision, false positive rate 

(FPR), G-means, F1 score, Matthews correlation coefficient (MCC), and the area under the 

curve (AUC). Resulting values shed light on every model's ability to make predictions and set 

a comparison against the metrics collected after the data cleaning, feature extraction, and 

model's parameters optimization. 

Table 2: Modelling Pre Optimization results 

Model Accuracy Recall Precision 
False Positive 

Rate (FPR) 
G-means F1 Score MCC AUC 

LSTM 0.96 0.67 0.86 0.01 0.81 0.75 0.74 0.91 

GRU 0.95 0.53 0.89 0.01 0.73 0.67 0.67 0.9 

CNN 0.96 0.61 0.9 0.01 0.78 0.73 0.72 0.9 

RNN 0.95 0.67 0.8 0.02 0.81 0.73 0.71 0.9 

Random 

Forest 
0.96 0.68 0.92 0.01 0.82 0.78 0.77 0.93 

K-Nearest 

Neighbors 
0.92 0.77 0.57 0.06 0.85 0.65 0.62 0.89 

XGBoost 0.97 0.7 0.92 0.01 0.83 0.79 0.78 0.91 

Gaussian 

Process 
0.93 0.73 0.63 0.05 0.83 0.67 0.64 0.83 
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7.2. Post-Optimization Results 

Through the first assessment of machine learning models, optimization approaches were put to 

the test to improve accuracy. Hyperparameter tuning and Grid search was applied to all the 

Models being evaluated to optimize their results. Assuming that performing different 

refinements on different parameters of the models would improve several performance 

parameters like accuracy, recall, precision etc., various modeling configurations were tested, 

and we have selected the best optimization output per Model. 

 

Table 3: Modelling Post Optimization results 

Model Accuracy Recall Precision 
False Positive 

Rate (FPR) 
G-means F1 Score MCC AUC 

LSTM 0.96 0.7 0.88 0.01 0.83 0.77 0.75 0.92 

GRU 0.96 0.56 0.9 0.01 0.74 0.7 0.69 0.9 

CNN 0.96 0.63 0.92 0.01 0.79 0.76 0.73 0.91 

RNN 0.96 0.69 0.82 0.02 0.82 0.75 0.72 0.91 

Random 

Forest 
0.97 0.71 0.94 0.0 0.84 0.81 0.79 0.94 

K-Nearest 

Neighbors 
0.93 0.79 0.6 0.05 0.86 0.69 0.63 0.9 

XGBoost 0.97 0.72 0.94 0.0 0.85 0.82 0.79 0.94 

Gaussian 

Process 
0.94 0.76 0.66 0.04 0.85 0.71 0.69 0.89 
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8. Summary 

The following evaluation metrics were used to compare the modeling results: 

● F1 Score: A measure of a test's accuracy which is calculated by taking both false 

positives and false negatives into consideration. Especially applicable in situations 

where there is a disproportionate ratio of sample elements. 

● AUC (Area Under the Curve): Evaluates the ability of the model to differentiate one 

class from another. Positive AUC values imply a higher degree of separation between 

the positive and negative classes. 

● Accuracy: The ratio of correctly predicted outcomes to all the predicted outcomes. For 

skewed or imbalanced datasets accuracy may not be viably reliable. 

● Recall (Sensitivity): Measures the percentage of relevant instances that are retrieved 

by the system. High recall ensures that we do miss events that actually happened. 

● MCC (Matthews Correlation Coefficient): Informative metric that combines true 

positive, true negative, false positive and false negative results in classification tasks. 

 

Figure 21 illustrates the F1 Scores across different models with and without hyperparameter 

tuning. As shown in Figure 21, the F1 Score for all models improved after tuning was applied. 

The greatest advances were noted during XGBoost, K-Closest Neighbors, Gaussian Process, 

while also having meaningful improvement in LSTM, GRU, CNN, RNN. F1 is a harmonic 

mean of precision and recall, which balances false positives and false negatives, which in our 

case serves as a good metric since our data is indeed imbalanced. 

 
Figure 21: F1 Score Model comparison 
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A detailed assessment of the improvements made on the F1 Score are depicted in Figure 22. 

The results indicate that XGBoost attained the greatest enhancement followed in turn by K-

Nearest Neighbors and Gaussian Process. Of the deep learning models, LSTM and GRU have 

shown slight improvements which signify that being optimized has made a positive impact on 

their classification capability. 

 
Figure 22: F1 Score Model Improvement 

AUC (Area Under the Curve): Indicates the effectiveness in distinguishing different classes. 

AUC of 1 means perfect prediction and of 0 means random guessing. As observed in Figure 23, 

the AUC Score improvement analysis was highest in the Gaussian Process and XGBoost 

models and further justified their utility in the earthquake prediction challenges. Whereas 

LSTM, GRU and CNN also gained improvement. 

 

 
Figure 23: AUC Score Model Improvement 

A cumulative analysis of the changes in Improvement for Accuracy, Recall, F1 Score, AUC, 

and MCC are consolidated in Figure 24. Gaussian Process displayed the most improvement in 
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AUC and MCC, while K- Nearest Neighbors had marked improvement in F1 Score. Deep 

learning-based models like LSTM, GRU, and CNN had consistent enhancements for the Recall 

and F1 Score Measures. It is apparent from these results that although all the models 

‘performed’ better after tuning, there was a relative gain for all models. 

 
Figure 24: Post Optimization Model Comparison Heatmap 

The heat maps depicting the correlations before and after the tuning processes are portrayed in 

Figure 25. The most important points are as follows: 

 

● After tuning, the correlation between Accuracy and F1 Score improved which showed 

a positive trend as the classification model predictions became more consistent. 

● The trade-off of some models that may have tried to achieve higher Recall but in return 

lowered their precision is suggested through the negative trend of Recall correlation 

with Accuracy. 

● The improvement in the Gaussian Process and XGBoost models was further 

corroborated by significantly higher correlations between AUC and MCC after tuning 

which proved the efficacy of these models. 
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Figure 25: Pre vs Post Correlation Heatmap 

Figure 26 presents the difference in distributions of F1 Scores before and after tunings. It can 

be observed that the median performance of all of the models improved and so did the variance, 

though to a smaller extent. Hence, this implies that there was an increase in reliability.  

 

 
Figure 26: Pre vs Post F1 Score Distribution range 

Furthermore, in Figure 27, displays the distribution of the improvements for different metrics 

which indicates that the maximum improvements were achieved in F1 Score and Recall, while 

MCC and AUC had relatively smaller but still significant improvements. 
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Figure 27: Distribution range for different ML metrics across Models 

 

 

In this study we used advanced machine learning and deep learning techniques, balancing 

methods, feature selection, and model optimization strategies. By integrating data 

preparation, strategic resampling, feature engineering, and model tuning, we aimed to 

enhance the predictive accuracy and reliability of various models applied to seismic data. 

Table 4: Best Models per metric 

Model Best in Metric Precision Recall G-means F1 Score MCC 

Random 

Forest 

Precision 

F1 Score 

MCC 

0.94 0.71 0.84 0.81 0.79 

K-Nearest 

Neighbors 

Recall  

G-means 
0.6 0.79 0.86 0.69 0.63 
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